Associative functions and Abel—Schrioder systems

By W. F. DARSOW and M. J. FRANK (Chicago, I1IL.)

1. Introduction

The principal aim of this paper is to investigate questions of the existence and
uniqueness of solutions to the associativity equation,

T(T(x, y), z) = T(x, T(y, 2)),

given the restriction of T to simple one-dimensional subsets of its domain. More spe-
cifically, for functions 7 defined on certain pairs of line segments in (0, 1), we shall
establish uniqueness and obtain conditions for existence of an extension of 7T to an
associative function on [0, 1]%

Our interest in these questions stems in part from their reformulation, via the
celebrated representation theorem, as questions about common solutions of two classi-
cal functional equations in a single variable, the Abel and Schréder equations. While
there is an extensive literature devoted to these equations individually, Abel—
Schroder systems seem to have been neglected, and merit study apart from any con-
nection with associativity.

The associative functions to be considered are the so-called Archimedean T on
[0, 1]*: continuous, increasing in each place, satisfying the boundary conditions

TO.x)=T(x0=0, 7T(,x)=T(x,1) =x,

and for which
T(x,x) =x when 0=x<1.

To motivate both the original problems and their reformulation, we begin with
the well-known version of the representation theorem for those Archimedean T that
are strictly increasing in each place over (0, 1] [1, 6]. Each T in this class admits
the representation

(R) T(x,y) = g *(gx)+g»)

where g is a strictly decreasing function from [0, 1] onto [0, ==]; and conversely, any
such g generates a member of this class via (R).

In two subsequent improvements of this theorem, a prominent role is played
by the diagonal é of T, i.e., the function

oY =T X)
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LING [5] extended the representation (R) to include all Archimedean T, provided
that g~ is appropriately modified in case the range of g is bounded. And recently
KRrAUSE [3] strengthened Ling’s result by showing that the theorem remains valid
when some of the assumptions (but not those concerning é) are weakened.

It is thus reasonable to ask how much information about T is contained in its
diagonal. As was pointed out in [2], one can easily use (R) to generate many distinct
T with a prescribed diagonal & by constructing solutions of the Schréder equation

(S) g(6(x)) = 2g(x).
In a similar fashion, for any fixed s in (0, 1), solutions of the Abel equation

(A) g(e(®) = g(x)+g(s)
generate associative T with a given s-section
o(x) = T(x, s).

And with minor technical adjustments, these statements hold for all Archimedean 7.

Hence a diagonal J and any section ¢, each a function defined on a line segment
in [0, 1]%, can be extended individually to many Archimedean 7. But what can be
said if both 6 and ¢ are specified ? Does there exist a common solution of (S) and (A4)
and thus an extension to T on [0, 1]*? If so, is T unique?

In the sequel we develop necessary and sufficient conditions to settle the first
question and show that the answer to the second one is affirmative in case one of &
and ¢ and certain restrictions of the other are given.

An important first step is recognizing that, for our purposes, it is possible to
reduce the system (A), (S) to certain simpler Abel—Schroder systems that are more
amenable to solution.

Some definitions, elementary results, and background needed throughout the
paper are gathered in Section 2.

The subject of Section 3 is Abel—Schroder systems. There we derive necessary
and sufficient conditions for the existence and uniqueness of solutions for the special
systems mentioned above.

The next two sections are devoted to using these results to solve the problems
we have posed concerning Archimedean T—Section 4 to uniqueness and Section 5 to
existence. -

The paper concludes with some observations about our results and suggestions
for further study (Section 6).

We end this introduction with a few remarks about notation. Parentheses will
regularly be omitted in expressions involving composites of several functions; thus
f(g(h(x))) may appear as fgh(x). For n=0, 1,2, ..., f* will always denote the n'
iterate of f, defined recursively by

=z ST =0

and f~" means (f~')" when f is invertibile.
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2. Preliminaries

In this section we present some notation and terminology as well as develop some
basic facts about generators, diagonals, and sections of the Archimedean T defined
in the introduction.

According to [5], a function T:[0, 1]>-+[0, 1] is Archimedean if and only if
there exists a generator g, a strictly decreasing function from [0, 1] onto [0, 4], such
that

g (g(x)+g(»), when 0=g(x)+g(»)=<a,

R T(x,y) =
U ) { 0, when a = g(x)+g(»),
for all x, yin[0, 1]. Here 0<=a= + . T'issaid to be strict when a= + - because it
is then strictly increasing in each place over (0, 1]%
In problems of extension and uniqueness, a second Archimedean T, with gene-
rator g,: [0, 1]—+[0, a,] will arise. Let
¢ = gg "

Clearly ¢ is strictly increasing from [0, a] onto [0, @], and g,=¢g. Depending on
how we shall relate T, to 7, ¢ will figure in one or more functional equations.
For example, suppose 7,=17. Then, as is easy to see, ¢ must satisfy the Cauchy
equation
ou+v) = @) +o(v)

when 0=u+v=a. Since ¢ is continuous, there exists a k such that ¢(u)=ku when
0=wu=a, and so we immediately get the following well-known fact.

Theorem 2.1. T,=T if and only if g,=kg for some k=0.
The diagonal of T is the function o: [0, 1]—[0, 1] defined by
(x) =T(x,x)
for all x in [0, 1]. Note that 6(x)=0 if and only if 2g(x)=a. Let d=g~'(a/2).
Then by virtue of (R),
d(x) = {

Theorem 2.2. A function é: [0, 1]1-+[0, 1] is the diagonal of some Archimedean

T if and only if there is a d in [0, 1) such that

(@) 0(x)=0 when 0=x=d,
(b) the restriction of 6 to [d, 1] is strictly increasing onto [0, 1],
(c) d(x)=x when O0=x=<=1.

0, when 0=x=d,
g '(2g(x)), when d=x=1.

Moreover, when o is the diagonal of T, d=0 if and only if a= + .

Necessity and the last sentence can be verified in a straightforward manner. To
find an Archimedean T whose diagonal is a function ¢ satisfying (a), (b), (c), it suffi-
ces to find a strictly decreasing g on [0, 1] with g(1)=0 that satisfies the Schroder
equation

gé(x) = 2g(x)
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for d=x=1. We adapt the standard construction given in [4] to fit the current con-
ditions. If d=0, there exists by (b) a unique x, in (d, 1) for which d(x,)=d; if
d=0, choose x, arbitrarily in (0, 1). Let x,=d"(x,) for all integers n=0. Notice
that when d=0, x,=0 for all n>1; otherwise from (c) it follows that the x, form
a strictly decreasing sequence convergent to zero. For each integer n<=0 there is a
unique x, in (x,, 1) for which é"(x,)=x,. These x, form a strictly increasing se-
quence that converges to 1 as n goes to —o=. Now choose any strictly decreasing g
from [x, x,] onto [1, 2]. Extend g over [0, 1] by defining g(x)=2"g(d"(x)) when
X,s1=x=<Xx,. Let g(1)=0, and let g(0)=+-<= in case d=0. This yields the re-
quired g.

Theorem 2.2 and the following result allow us to determine, among other things,
all T having a prescribed diagonal.

Theorem 2.3. Consider Archimedean T, and T for which dy=d, and let D be
any subset of [d, 1]. Then &y(x)=46(x) for all x in D if and only if ¢ satisfies the
Schrader equation

¢ (2u) = 2¢(w)
for all u in g(D).

The proof of this is straightforward upon observing that &,(x)=gq'(2g,(x))
and 6(x)=g~*(2g(x)) when d=x=1.
For O<s<]|, the s-section of T is the function o: [0, 1]—|0, 1] defined by

a(x) = T(x,s)

for all x in [0, 1]. Since the generator g of T is, according to Theorem 1.1, determined
up to a positive multiple, g can be chosen so that

g(s) =1

Unless otherwise specified, we shall, in the presence of an s-section, tacitly assume
that this has been done. Note that ¢(x)=0 if and only if g(x)+1=a. Let
c=g (a—1). Then by virtue of (R),

0, when 0=x=¢,

R { g Y (g(x)+1), when c=x=1
Observe that, since T is commutative, the “horizontal” and “‘vertical” s-sections are
identical.

The proofs of the next two theorems are analogues of the proofs of the preceding
two.

Theorem 2.4. A function o:[0, 11-[0, 1] is the s-section of some Archimedean
T if and only if there is a ¢ in [0, 1) such that

(@) o(x)=0 when 0=x=c,
(b) the restriction of o to [c, 1] is strictly increasing onto [0, s],
(c) 6(x)=x when O0<=x=1.

Moreover, when o is the s-section of T, ¢=0 if and only if a=+ .
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To obtain a T with prescribed s-section o, it suffices to construct a generator g
satisfying the Abel equation
go(x) = g(x)+1

for c=x=1. Let y,=0"(s) for integers n= —1. Notice that the y, converge mono-
tonically to zero when ¢=0; and they eventually reach 0 when ¢=0. Choose any
strictly decreasing g from [s, 1] onto [0, 1]. Extend g over [0, 1] by defining g(x)=
=n+g(e¢"(x)) when y,<x=y,_,. Let g(0)=+< in case ¢=0, and g(0)=2
in case c¢=0.

Theorem 2.5. For fixed s in (0, 1), consider Archimedean T, and T for which
co=c, and let S be any subset of [c, 1]. Then 6y(x)=0(x) for all x in S if and only if
¢ satisfies the Abel equation

eu+l) = @(u)+1
for all u in g(S).

Some elementary relations between diagonal and sections are collected below.

Theorem 2.6. For Archimedean T with diagonal é and s-section o

(a) a(s)=0d(s)

(b) é(x)=0(x) when O=x<s

(©) o(x)=5(x) when s<x=1

(d) either s<d<c¢, s=d=c, or s>d=c.

The inequalities in (b) and (c) are strict when the right sides are positive.

3. Abel and Schrider Jointly

In this section we present some results on the existence of a common solution ¢
to an Abel equation and a Schrdder equation

(A) PE(x) = 1+0(x)
(S on(x) = 2¢(x).
Two special cases needed in the following sections will be considered.

Case 1. Let ¢ be strictly increasing from [0, 1] onto [I, 2], and let n(x)=2x
for all x. When does there exist a strictly increasing ¢ from [0, 2] onto [0, 2] satis-
fying both (A) and (S) for all x in [0, 1]?

Case 2. Let n be strictly increasing from [1, + =] onto [2, 4 <], and let {(x)=
=1+x for all x. When does there exist a strictly increasing ¢ from ([1, + =] onto
[1, 4 <=] satisfying both (A) and (S) for all x in [I, 4 ==]?

We begin with case 1. It can quickly be seen that any solution ¢: [0, 2]-R
whatever to

(Ay) P¢(x) = 1+¢(x)
(Sy) ¢ (2x) = 2¢(x)
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for all x in [0, 1] must assume the values ¢ (0)=0, ¢(1)=1, ¢(2)=2 and must satisfy
the equation ¢ [%] =%<p(_}') for all n=0 when 1=y=2. Consequently, by
way of (4,),

X I o
qn:(i; —1+2,.cp(y)

for all y in [1, 2] and all n=0. Let f be the restriction of ¢ to [1, 2]. Then f(1)=1,
f(2)=2, and for all n=0

(AS), 7e(%) =145 70

when 1=y=2. Conversely, suppose that fis a function on [1, 2] with f(1)=1 and
f(2)=2 which satisfies (45), for all n=0 when I=y=2. Let ¢(0)=0, and

P 1 2
(l) ¢(Z)=-§-,-'—f(2 z) for ?{Z_F
when n=0. Then it is easily checked that ¢ satisfies (4,) and (S,) for all x in [0, 1].
This yields

Theorem 3.1. By way of (1) there is a one-to-one correspondence between the
simultaneous solutions ¢ of (A;) and (S,) on [0, 1] and the simultaneous solutions f on
[1,2] of the (AS),, for n=0, with f(1)=1 and f(2)=2. Moreover, ¢ is continuous,
increasing, or strictly increasing on [0, 2] precisely when f is (respectively) continuous,
increasing, or strictly increasing on [1, 2].

—elt)

Then #,=2 and ¢, decreases strictly to 1 as n goes to + <=. For any f on [I, 2] with
f(D=1 and f(2)=2, let f be the function on [I, 2] defined by

For n=0 let

@  JO) =l fRUEI) for =y =t and 1) =1

Theorem 3.2. Let f, be a bounded function on [1, 2] with fo(1)=1 and f3(2)=2.
Using (2), define f,, on [1, 2] recursively by fo=fm-1 for m=0. Then f, converges
uniformly on [1, 2] to a bounded function f on [1, 2], with f(1)=1 and f(2)=2, that
satisfies (AS), on [1, 2] for all n=0. Moreover, f is continuous or increasing when f,
is continuous or increasing, respectively.

To show the uniform convergence of the f,,, consider any y in (I, 2] and the
corresponding n=0 for which r,<y=1¢, ;. Given m=0,

s 1) ~Sa D] = | D) ~Fm-a (D) =
= a2 ) s O = 5 a9 —Faes 0
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for some y, in (1, 2]. Repetition of this argument for y,, and so on, yields

|fm+l(y) fm(y)l — 2m lfi(ym) j;)(ym)[

for some y,, in (1, 2]. Since f; 1s bounded, there exists an M such that

M
Uner N —fu() =57 when 1=y=2 and m=0.

Consequently, for all m, k=0 and all y in [, 2],

sk () é"'zm 1) —£, ) _’"Z’;ﬁ = o,

whence the f,, converge uniformly on [1, 2] to some fon [1, 2]. Now fix n=0. By (2),

furit (%) = 1ut (%) = 143 £

when 1=yp=2, and so in the limit, as m— + <o, f satisfies (45), on [1, 2]. What is
left to prove follows at once by virtue of inheritance through uniform convergence
and the hat operation.

For questions of uniqueness it is useful to introduce, for each n=0, the strictly
increasing function ¢, from [1, 2] onto [t,, t,_,] defined by

e 5L
for 1=y=2. The composites &, é,,..-f,,k are critical because

(3) f(én; gnk (J’)) = l '+' ‘?T]-_"_T"{" +——2"£(‘.Tln&

for 1=y=2 whenever [ satisfies (45), for all n. The verification of (3) requires an
easy induction.
Let R be the set of all dyadic rationals in (1, 2), that is, all

1

(13, 1y, o] = I+ mt et o+ s

for positive integers n,, ny, ..., n,. And let

9(["‘1’ it "k]) = énl énk (l)

for each [n,, ..., m]. Let K be the range of 0, a subset of (I, 2). It is not difficult to
show that 0 is a one-to-one, order preserving mapping of R onto K. Therefore, if f
is a solution to the (4S), on [1, 2] with f(1)=1 and f(2)=2, then (3) immediately
implies that f(8(r))=r for all r in R. The restriction of f to K is thus also a one-to-
one, order preserving mapping of K onto R. Upon combining these facts with Theo-
rems 3.1 and 3.2, we obtain the proof of
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Theorem 3.3. When K is dense in [1, 2] there is a unique continuous solution ¢
to (A,) and (S,) simultaneously on |0, 1], which of necessity is strictly increasing.

Assume, now, that fis continuous and increasing from [1, 2] onto [1, 2] and that f
satisfies (4S5), on [I, 2] for all n=0. Let (a, ) be an open interval in [1, 2] conti-
guous to K — that is, a component of the complement in [1, 2] of K, the closure of K.
Note that 1 and 2 are in K. Since the restriction of fto K is one-to-one and order
preserving onto R, it follows that f(a)=/(b), whence fis constant on [a, b]. But this
means that f is uniquely determined, and we have proved

Theorem 3.4. There is a unique continuous and increasing solution ¢ to (A,)
and (S,) simultaneously on [0, 1]. Moreover, ¢ is strictly increasing if and only if K
is dense in [1, 2].

The following result provides a useful test for the density of K. To simplify its
statement and proof, some ad hoc terminology will be adopted : we say that an in-
finite sequence ny, n,, ..., n, ... of positive integers is admissible if it is not eventually
constantly 1, in which case we let n, , n,, ..., 7, ... be the subsequence obtained by
deleting all occurrences of 1.

Theorem 3.5. K is dense in [1, 2] if and only if, for each admissible sequence
Ny, Ny, ..., Ny, ... Of positive integers,

éal éng e é"tj (2)"_51'!1 éng é"kj (l) -0

as j—eo.
We begin the proof by observing that the equation
1 1

|
v= l+§;ﬁ+ 2”l+,,a+ P +...

establishes a one-to-one correspondence between the real numbers v in (1, 2) that
are not in R and the admissible sequences. Clearly [n,, ..., n] increases to v as
k—+o, and [m, ..., n(,‘j_l,] decreases to v as j--+<o. Since &y, _”(I)zﬁ.,kJ (2)
and since 0 is one-to-one and order preserving from R onto K it follows that

@ b vl < ey 8, D

with the left side increasing and the right side decreasing as j— + .

Suppose K is not dense in [1, 2]. Then there is a subinterval (u, w) of [1, 2] dis-
joint from K. Let R-={r in R: O0(r)<u} and R*={r in R: w=0(r)}. Since
R-JR*=R and since x=y when xisin R~ and yisin R¥, there existsa vin (1, 2)
for which sup R~ =v=inf R*. Moreover v is not in R so that

| 1
v=14+—F .. t—t...

T am

for some admissible sequence n,, ..., 1y, .... As a consequence 0([n,, oy M ) =u
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and 0([n,, ..., ng,—y])>w, whereupon
‘Enl 5«;‘1 (2) _fnl éng, (l) =w=—u>0

for all j and cannot converge to zero.

Conversely, suppose K is dense in [1,2]. Let n,, ..., n;, ... be any admissible
sequence, and let v be as above. Let w and w be the limits of the sequences on the left
and right sides of (4), respectively. Suppose w<w. The denseness of K guarantees
u’,w' in K such that wu<w'<=w'<w. But then [ny,...,n ]<07'(uW)<0""(w)=
<[ny, ..., my, 1] for all j so that v=0""(u")<0""'(w)=v, which is impossible and
completes the proof.

We now consider case 2. It is readily checked that any solution ¢: [I, +=]—=R
whatever to

(Ag) px+1)=1+¢(x)
(S2) on(x) = 2¢(x)

for all x in [1, + =] satisfies ¢(n)=n for all integers n=1 and @(x+n)=@((x)+n
for all x=1 and n=0. Thus, ¢ is determined by its resctriction f to [1, 2].

Our chief concern is with the existence of a strictly increasing solution ¢ from
[1, + =] onto [I, +==]. If such a ¢ exists, then n(x)=¢"*(2¢(x)) when x=1 by
(S,), from which we can easily obtain the further relation

(") n(x+n) = n(x)+2n

for all x=1 and integers n=0. In particular, note that n(n)=2n for all integers
n=1. For the rest of this section, assume that (*) holds.

In view of the above observations, the problem of finding solutions ¢ to (4,)
and (S;) is equivalent to determining those f on on [I, 2] with f(1)=1 and f(2)=2
for which

f(n(x)—1)+1, when 2=n(x)=3,
(AS), ¥ = { f(n(x)—2)+2, when 3=n(x)=4.
Clearly ¢ will be strictly increasing onto [1, + <] just when f is strictly increasing
onto [1, 2].

For any bounded f on [1, 2] with f(1)=1 and f(2)=2, let

SIn(x)—1)+1
2

fn(x)—2)+2
2

Then f'is well-defined on [1, 2] with f(1)=1, f(2)=2, and fy~1(3)=3/2.

Theorem 3.6. Let f, be a bounded function on [1, 2] with fy(1)=1 and f,(2)=2.
Using (5), define f,, on [1, 2] recursively by f,=fn_1 for m=0. Then f,, converges
uniformly on [1, 2] to a bounded function f on [1, 2], with f(1)=1 and f(2)=2, that
satisfies (AS),.. Moreover, f is continuous or increasing when f, is continuous or increas-
ing, respectively.

, When 1=x=9"1(3),

) fx) =

, when 713)=x=2,
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The proof is not essentially different from that of Theorem 3.2, its counterpart
for case 1. Observe that instead of the intervals (#,, ,.,] in the proof of the former,
there are here just the two intervals [1, #71(3)] and [n71(3), 2]. We omit the details.

To establish uniqueness in case 2, we need a representation for the dyadic ratio-
nals R in [1, 2] different from the one used in case 1.

Let

3 —1)= (— 1)
(81! E9y 40y s.l;) S _2"|'—(—§§)—+ +_2ﬁ-_l'—’
where the ¢; are the integers 1 and 2. Each member of R except -%— has exactly one such
form. For e=1 and 2 let
n.(x) =" x+6) for 1=x=2.

From the strictly increasing character of », together with the fact that 7(2)=4, we
get the useful inequalities

(6) l=mx)=<n"3)<=n(x) <2 when 1 =x-=2
Let 6,: R—[1,2] be defined as follows:

0, [%] =n"1(3),

0,(C1y «ves 8)) = N lley o= Mg, (172(3))

And let K, be the range of 0,.
We shall show that 0, is one-to-one and order preserving. Suppose r, r’in R are

such that r=r’. When r=% and r’'={g, ..., &), then & =2 and at once from (6)

we have 0,(r)=n"'(3)<0,(r"). A similar argument holds when r'=%. Suppose,

now, that r=_g,, ..., &) and r’'=(e, ..., &). Since r<r’, e;=¢. If ¢;<¢g (e,
e, =1 and e;=2), itis clear from (6) that 0,(r)<n~'(3)<0,(r'). If & =¢;, there
is a largest integer j=1 for which g =g/ when i=j. Three cases must be considered:

j —_ I With sj'l'l - 1,
j=k with g, =2,
j - l’l'lin {k, I} With 8j+1 — 1 and £}+1 = 2.

From (6) and the definition of @, we get three corresponding inequalities:

0,((&j41s s &) <0, (%]’

0, [%] < 0, ((€j41s +» &)

Oy (€415 -5 &) < 0, ({415 - s &)
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If, in each case, x and y are the left and right sides, then 0,(r)=n,...n;(x) and
0.(r)=ny...n;(»). Hence in all cases 0,(r)<0,(r").

To obtain the analogues of Theorems 3.3 and 3.4, we need one more fact: if f
is a solution of (AS), with f(1)=1 and f(2)=2, then

(7 f(ﬂ* (r)) ==F

for each r in R. First, direct substitutions into (AS), immediately give (7) when r=%,

r={(1) :%-, and r=(2)=%. To establish (7) for all r={(e,, ..., &), we proceed by

induction on the length of the finite sequences &,, ..., &. Fix k=1 and assume that
(7) holds for those r represented by sequences of length £ —1. From (6) and the defi-
nition of 0,, (AS). becomes

zf(ot (r)) =f(’?9* (r)_sl) +&.

But n0.(r)—&=0,((e,, ..., &)), whence by the induction hypothesis,

21(0,(r)) = (eay ...s &)+ 581

A simple calculation gives (&, ..., &)+& =2r, and (7) thus holds.
Now, the arguments employed in proving Theorems 3.3 and 3.4 carry over to
yield:

Theorem 3.7. When K, is dense in[1, 2] there is a unique continuous solution ¢ to
(Ay) and (Sy) on [1, + <], which of necessity is strictly increassing.
Theorem 3.8. There is a unique continuous and increasing solution ¢ to (A,)
and (Sy) on [1, + <=]. It is strictly increasing if and only if K, is dense in [1, 2].
There is also a counterpart to Theorem 3.5. Consider the equation
L (= 1

v=— 2 = + ... +——— T +...

which establishes a one-to-one correspondence between the real numbers v in (1, 2)
that are not in R and the infinite sequences ¢, , &, ..., &, ... of integers 1 and 2 that
are not eventually constant. Note, for k=1, that

<81, ceny sk>"= V=< <€1, ceny sk_l> if Ek =< Ek+1s
and
1y cos &) > 0> (81, o0y Bg—y) If & > Eg4y.

Let [, for k=1 be the interval whose endpoints are (e, ..., &) and (&, ..., & _).
The I, are closed nested intervals such that v is interior to 7, and 7, _, is interior to 7,

for all k. Moreover, ﬂ I,={v}. Since 0, is one-to-one and order preserving, the

proof of Theorem 3. 5 can be duplicated to prove
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Theorem 3.9. K, is dense in[1, 2)if and only if, for each infinite sequence g, , ,, ...,
&, ... of integers 1 and 2 not eventually constant,

MeyNeg -+~ Ny (17 (3)) = Mey Mg --- Mgy, —1(7(3)) = O

as n—-oo, whereg,, ..., &, ... is the subsequence of ¢,, ..., &, ... obtained by deleting
all occurrences of 1.

Some important comments about the results of this section are presented in
Section 6.

4. Sets of Uniqueness

Consider Archimedean T,, T with diagonals d,, 6 and s-sections ¢,, o, respect-
ively. Throughout this section assume that d,, d, ¢,, ¢ as defined in Section 2 are such
that dy,=d and c¢,=c. Let g: [0, 1]—[0, a] be the generator of T for which g(s)=1.
Then there is a strictly increasing ¢ from [0, a] onto [0, a,] with @(1)=1 such that
the generator g,: [0, 1]—+[0, a,] with go(s)=1 of T, is given by g,=¢g. Consider
subsets D of [d, 1] and S of [¢, 1]. According to Theorems 2.3 and 2.5, if the restric-
tions of 4, §, to D coincide and the restrictions of o, g, to S coincide, then

(S) ¢©(2u) = 2¢(u) when wucg(D)
(A) @(u+1)=¢@(u)+1 when ucg(S).

For certain D and S the only common solution ¢ to (S) and (A) is the identify func-
tion. When, in such cases, it can be shown that ¢ must be the identity on all of [0, a],
then necessarily T,=7. Archimedean T are thus uniquely determined by their res-
trictions to these sets DU S.

Of special interest are the cases when d,=0 or when g,=0.

Theorem 4.1. Suppose 6,=95. Then T,=T in each of the following cases:

(@) c=s and o6,(x)=0(x) when s=x=1;
(b) T is strict and there is an e=0 for which oy(x)=0(x) when 0=x=¢g;
(©) c=0(s) and oy(x)=0(x) when c*(s)=x=s.

To prove part (a), note first that ¢ must satisfy (5) and (A4) with D=[d, 1] and
S=[s, 1. By Theorem 2.6, c¢=d=s, whence | =g(.s‘)§g(d)=%. Since g(D)=

=[0, %] and g(8)=[0, 1], it then follows that ¢ satisfies (§) and (A4) at least for

all # in [0, 1]. By virtue of Theorem 3.4, with £(x)=x+1, there is only one common
solution to (S) and (A4) on [0, 1]. And since the identity function is a solution, we have

that ¢(¥)=u when 0=wu=1. Finally, since (S) holds for 0*=fu*=f%, it is clear that
@@)=u when O0=u=a.

For part (b), a=+< and ¢=d=0, so ¢ satisfies (S) for all u=0 and (A4) for
all u=g(e). Let k be a positive integer for which 2*=g(¢). Note that, from (S),
@(2"u)=2"p(u) for all u=0 and all integers n. And because ¢@(1)=1, it then fol-
lows, from (A), that @(m)=m for all integers m=2*. Let u be any positive dyadic
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rationdl There is an integer n=k such that 2" is an integer exceeding 2*. Hence,
qa(u)——(p(Z"u)-— (2"u)=u. The continuity by of ¢ ensures that ¢(u)=u for all

u=0, as requlred.
Finally, consider part (c), in which D=[d,1] and S=[c*(s),s] — that is,

g(D)=[0, —;-] and g(S)=[1,3]. By assumption a—1=g(c)=g(c*(s))=3, so
a=4. Both (S) and (A4) thus hold at least for 1 =u=2. By virtue of the continuity
of ¢ and the fact that (S) holds for 0O=u=< 5 it suffices to show that ¢(u)=u for

all dyadic rationals u L (1, 2) where m is odd. We proceed by induction on n.

2!!
3 1 1 3
If n=1, then m=3 and ¢[5)=?(p(3)=7[(p(1)+2]=5. Suppose n=>1.
: 3 3 m—2"-1
Then either u‘==—2- or 5{1.:, In the first case, 1<2u—1<2 and 2u—1 =

so that qo(u)— <p(2u)——[qp(2u-l)+l]—— [2u—1+1]=u. In the second case,

|l =2u—2<2 and 2u—2=2—,,_-%— so that

o) =5 0(u) = 5 [pQu-2)+2] = 3 [u—2+2] =

The proof is complete.
Theorem 4.2. Suppose o,=0. Then T,=T in each of the following cases:

(a) d=s and 6,(x)=0(x) when s=x=1;
(b) T is strict and there is an &=0 for which d,(x)=0d(x) when 0=x=e.

The proofs of parts (a) and (b) are analogous to the corresponding parts of
Theorem 4.1. For (a), c=d=s so that 1=g(s)=g(¢)=a—1 and a=2. Then ¢
satisfies (S) on [0, 1] and (A4) on [0, a—1]. Again we can invoke Theorem 3.4 to
conclude that ¢ is the identify on [0, 1] and, by (A4), on [0, a] as well, as required.
Now for part (b), we have a=+< and c¢=d=0 so that ¢ must satisfy (S) on
[g(e), + =] dl'ld (A4) on [0, + <=]. Choose an mteger k=g(e). For any positive dyadic
rational u—i;, we have rp(u)=§o(u+k)—k=? rp(2"u+2"k)-k=-il-;(p(m+2"k)—
—k=u, and the conclusion follows by continuity of ¢.

The parts of Theorems 3.1 and 3.2 in terms of the restriction of T to pieces of
the diagonal and vertical s-section over the unit square are pictured below. The solid
lines inside the squares indicate sets of uniqueness.
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5. Extension

Let D and S be closed subintervals of [0, 1], and assume that 0<s<1. Consider
continuous and strictly increasing functions é: D-[0, 1] and &: S—[0, 1]. Observe
the abuse of notation; here d and ¢ need not be diagonal and s-section of any Archi-
medean T. In the preceding section, upon the assumption that é and o are the res-
trictions of the diagonal and s-section of some Archimedean 7, we gave examples
of D and S for which T is unique. In this section we shall be concerned with the cir-
cumstances under which é and o are compatible in the sense that there exists an Archi-
medean T whose diagonal and s-section when restricted to D and S are 6 and o.

Theorems 2.2, 2.4, and 2.6 impose several necessary conditions for compatibility.
We shall in the sequel, then, assume the following:

(a) d0(0)=0 if 0eD; o¢(0)=0 if 0€S;

(b) o()=1 if 1€D; o(l)=s iIf 1€S;
0x)<x if 0=<=x<1 and x€D;

© o(x)<x if O<x=1 and x€S;

(d) 0(x)=0o(x) if 0=x-<=s and x€DNS;

(e) d(x) =a(s) if seDNS;

(f) o(x) <d(x) if s<=x<1 and x€DNS.
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By extension of é from D to [0, 1] (if necessary) a continuous and strictly decreas-
ing g: DUJ(D)—[0, + =] can be constructed, as in the proof Theorem 2.2, so that

go(x) = 2g(x) when x€D.

Note that 2u€gd(D) when u€g(D). Now suppose that ¢ is strictly increasing from
g(DUS(D)) onto g(DUS(D)) and

o(2u) = 2¢(u) when wucg(D).

Then, as in Section 2, d is the restriction to D of the diagonal of some Archimedean
T, if and only if the restriction to DUJ(D) of a generator of T, has the form ¢g.

Similarly, o is the restriction to S of the s-section of some Archimedean T, if
and only if the restriction to SUa(S) of a generator of T, has the form yh, where
h: SUa(S)—[0, + =] is continuous and strictly decreasing with

ho(x) = h(x)+1 when x€S
and y is strictly increasing from A(SUa(S)) onto k(S Uc(S)) with
Y(u+1)=y(u)+1 when wuch(S).

When DUS(D) and S Ua(S) are non-overlapping intervals, ¢g and /i can
be extended and abutted (after possibly multiplying one of them by a constant) to
create a generator of some Archimedean T, whose diagonal and s-section are exten-
sions of 4 and ¢. We have thus established

Theorem S.1. /f DUS(D) and SUa(S) are non-overlapping intervals, then &
and o are compatible.

On the other hand, it is easy to find incompatible  and o in several cases where
the intervals D, S,and D[S are large. Consider any Archimedean T and any one of
the sets of uniqueness that appear in the preceding section, say, la. Let ¢, be a func-
tion whose restriction to [s, 1] coincides with that of ¢, but ¢,#0. It is evident that
and o, cannot possibly be compatible.

The problem of compatibility is, in general, very difficult. We have been able to
find conditions for the compatibility of é and ¢ in two special cases of interest:

1)) D=S=s1]
(Im) D =S=]0,s]

To begin case (I), observe that DUJ(D)=[c(s), 1] since o(s)=0d(s)<s. We
can construct g on [a(s), 1], as described above, so that

(1) go(x) = 2g(x) when s=x=1,

and g(s)=1. Then g(o(s))=2, and g is strictly decreasing from [a(s), 1] onto
[0, 2]. Consequently, any ¢, as described above, is strictly increasing from [0, 2] onto
[0, 2] and

@(2u) = 2¢(u) when 0=u=1.

4-
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For compatibility of § and &, one such ¢ must satisfy
0g(o(x)) = pg(x)+1 when s=x=1,
or, equivalently,
pgog Y (u) = @(u)+1 when 0=u=1.
Now upon letting
: . { = gog™,
this equation becomes
o) =@w)+1 when 0=wu=1.

Observe that £ is strictly increasing from [0, 1] onto [1, 2].
To summarize, é and ¢ are compatible if and only if there is a strictly increasing
function ¢ from [0, 2] onto [0, 2] such that

@ (2u) = 2¢ (u)
@é(u) = 1+ (u)
when 0=u=1, where g is a solution of (1) and &=gog!; if @ exists, any extension
of g to [0, 1] generates an Archimedean extension of § and o.
The problem of the existence of such a ¢ is just case 1 of Section 3. Thus, with K
as defined there, é and ¢ are compatible if and only if K'is dense in [1, 2] (Theorem 3.4).

To express elements of K in terms of § and ¢ directly, observe that (1) can be
written as

g0 Y (u) = %g(u) for é(s)=u=1.
Since wu=d0"'(u)=1, we have

867" (1) = 57 £(W)
for é(s)=u=1 and all integers n=0, whence

% =gé~"g"(y) when O0=y=2.

Also, &,(»n=¢ (%;] =gog‘1[% for 1=y=2, which means that

Ca(y) = goo7"g7'(y) when 1=p=2
Consequently, for integers n;=0,
Enylng - Emg (1) = gO6~MG5" ... 36~"(s).
Let G=g~'(K), that is, the subset of [d(s), s] consisting of all

ocd~Mad " ... 60 "(5).
We have, at once,
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Theorem 5.2. In case (I), 6 and o are compatible if and only if G is dense in

[0(s), s].
Observe that Theorem 3.5 translates to

Theorem 5.3. /n case (1), 6 and o are compatible if and only if, for each admissible
sequence ny, ny, ..., Ny, ... of positive integers,

66 "8 " ... 06 ™i(s)—ad " "ad " ...c"™i(5(s)) - O
as j—oo.

Given compatible é and ¢ defined on [s, 1], one can easily extend @g so as to
generate a T whose diagonal or s-section is any specified extension of é or o, respect-
tively, to [0, 1]. For a diagonal 4, whose restriction is 4, let x,=4d%(s) for all n=0,
and define the extension of @g by 2"pgd;"(x) when x,.,=x=x,. Similarly, for an
s-section g, whose restriction is o, let y,=a%(s) for all n=0, and define the exten-
sion by n+@go;"(x) when y,_,=x<=). Notice that T is uniquely determined in
either case. This follows from Theorem 3.4 or, alternatively, from parts (a) of Theo-
rems 4.1 and 4.2.

Now, consider case (II) where, since D=5=[0,s5] and a(s)=s, sUa(S)=
=[0, 5s]. Here we can construct a strictly decreasing /# from [0, 5] onto [1, + <], as
described above, so that

(2) ho(x) = h(x)+1 when 0= x =ys.

And, continuing the analogy with the previous case, any V is strictly increasing from
[1, 4+ <] onto [I, 4 <] and

Yyu+1)=yw)+1 when wu=1.
For compatibility of é and o, one such i must satisfy
Yh(d(x)) = 2yh(x) when 0=x=s5,
that is,
Yhéh='(u) = 2y () when u=1,
Yn(u) = 2 (u).

Consequently, é and ¢ are compatible if and only if there is a strictly increasing
Y from [1, 4+ <] onto [I, 4 <=] such that

Y(u+1)=yw+1
Y (u) = 24 (u)

when u=1, where / is a solution of (2) and n=hoh~'; if y exists, any extension of
yh to [0, 1] generates an Archimedean extension of é and o.

Now we have case 2 of Section 3. Thus, with K, as defined there, we shall have
and ¢ compatible exactly when K, is dense in [1, 2] (Theorem 3.8).

From (2), it is obvious that

x+1 = heh=1(x)
x+2 = ha*h~1(x)

or, with n=hoh?,
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when x=1, and since n~'=hd"'h"!, we have
n Y x+1) = hé 'eh™'(x)
n~Y(x+2) = hd 6%h~'(x)
when 1=x=2. Thus K, consists of #d~'h~'(3) and all
hé=16* 61 ... 6 1a*%-15"1a*d-Th~1(3).

Note that A~1(3)=02%(s).
Let H=g '(K,), that is, the subset of (a(s), s) consisting of

5~ 1a*(s)
together with all
6-1g%1671...0"1a*-15" 1061 (a2(s)).

Theorem 5.4. In case (1), 6 and o are compatible if and only if H is dense in
[6(s), 5.

And in translation, Theorem 3.9 becomes

Theorem 5.5. In case (I1), 6 and o are compatible if and only if, for each infinite
sequence &, €s, ..., &, ... of integers 1 and 2 not eventually constant,

510016710 ... 510, ~D(51%(5)) —
—5-1g1§-1g% ... 5‘10(‘1:"‘1)(0'5'10'2(3)) -0

as n—o, where &, ..., &, ... is the subsequence of €., ..., &, ... obtained by deleting
all occurrences of 1.

As was true in case (I), if 6 and o are compatible on [0, s], there is a unique Archi-
medean T whose diagonal d, or s-section ¢, is any prescribed extension of é or o.
To generate T, we extend 111!: as follows. Given d,, let x,=d%(s) for all n<0, and
extend via 2"yhé;"(x) when x,,,x<x,; given a,, by ybha,,(x)—l when s<x=1.
Uniqueness follows either from Theorem 3.8 or from parts (b) of Theorems 4.1.
and 4.2.

6. Remarks

(1) To each of the theorems on Archimedean T in Sections 4 and 5 there corres-
ponds a dual result for the class of associative functions 77 on [0, 1]* that are conti-
nuous, are non-decreasing in each place, satisfy the boundary conditions

Te.x)=Tx00=x, T'1L)=T(x1=1
and satisfy
T’(x,x)>x when 0<x<1.

Each T’ admits the representation (R) of Section 2 for a strictly increasing generator
g from [0, 1] to [0, a]. Therefore, with the obvious changes in notation and assump-
tions, all of the results in Section 2 have counterparts for the T”. In particular, the
conclusions of Theorems 2.3 and 2.5 are valid verbatim.
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To get the dual sets of uniqueness for the T, reflect each of the sets in Section 4
about the point (1/2, 1/2). And, upon reversing (I) and (II) of Section 5, one is led to
identical conditions for compatibility.

(2) The representation theorem is valid for Archimedean functions defined on
any interval. Thus, while we have stated our results for 7 on [0, 1] in order to simplify
the exposition, everything in Sections 4 and 5 is, with transparent modifications, true
in the more general setting.

(3) Each of the sets of uniqueness DIJS obtained in Section 4 is minimal in
the sense that the removal of any interval yields a set on which T is never uniquely
determined. (Observe the exception that must be made in cases 1b and 2b.) For, in
fact, should an interval be removed from either g(D) or g(S), it is always possible to
construct common solutions ¢, other than the identity, to equations (S) and (4) of
that section.

(4) The existence proofs presented in Section 3 can be used, at least in principle,
to construct solutions of the Abel—Schrioder systems. In case 1, for instance, the
instructions given in Theorem 3.2, together with equation (1), yield the solution ¢.
For all but trivial £, however, the limit function ¢ is difficult to construct. On the other
hand, one can always find the unique « for which ¢ (u) is any given dyadic rational by
applying equation (3) with y=I.

(5) It would be desirable to find simple, neat conditions on &, say, of Section 3
to replace those occurring in Theorems 3.4 and 3.5. Part of the difficulty in finding
any such conditions is that when any composite &, ... &, has two fixed points x and
v, then equation (3) of that section implies that f(x)=f (_l-'), and, thus, that the con-
tinuous solution to the Abel—Schroder system can not be strictly increasing.

The best we have been able to get is the following sufficient condition, a corollary
to Theorem 3.5:

K 1s dense in [I, 2] if

y—x

1 S
when -Eéxé}":fl and there exists an M <1 such that for all n=>1.

¢(¥)—¢&(x) = M
y—x
1 '
From this it can be shown that K is dense in [1, 2] whenever £ is concave or when
£ is convex and its graph lies above the line y=2x on [0, ).
For case (I) of Section 5, there is a very weak counterpart to the bounded slope
condition above: d and ¢ are compatible if there exists an N=1 and an M<N for

which

M=) _ » M-
. y—Xx

=M

when s=x<=y=1. This follows directly from Theorem 5.3. Case (II) of Section 5
admits no similar slope conditions.
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(6) We illustrate some of our results on extension in case (I) of Section 5 with

an example. Let s=% and

8(x) = 2x—1

o(x) = %—3(1 -x)?

for %éxé 1. (Note that 6 and ¢ just fail to meet the above slope requirement.)

For this é there is a simple and natural choice of g, namely

=x=1

w].—-

g(x)=3(1-x) for

and so &(u)=gog '(u)=u*+1 for O=u=1l.
By virtue of Remark (5), the solution ¢ of the system

p+1) = qo(u)+1} gy
@ 2u) = 20 (u) e

is strictly increasing. Hence, é and ¢ are compatible, and their extensions T are gene-
rated by extensions of ¢g to [0, 1]. The construction of any such T thus rests on that
of ¢ (but see Remark (4) above ). Various aspects of the structure of extensions 7T in
this and similar examples remain to be studied.

(7) The methods used in Section 3 can be extended to solve a wider class of
Abel—Schroder systems; however, the general problem is unsettled.
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