On some properties of linear recurrences

By PETER KISS (Eger)

1. Introduction

A linear recurrence G={G,};>, of order k (=1)is defined by rational integers
Ay, A,, ..., A, and by recursion G,=A4,G,_,+A4,G,_+...+A4,G,_, (n=k), where
the initial values G,, G,, ..., G,_, are fixed not all zero rational integers and A,>0.
We suppose that the roots a,, a,, ..., o, of the characteristic polynomial

g(x) — xk—Alxk-l— P —A*
are distinct and so
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% Oy ... O
D=l a ..of |= JI (@—a)=0.
. . . 1=si<j=k
k=1 ok=1 .. gk

Let x,, Xy, ..., X, be variables. We define a k Xk determinant M; from D by
rejecting the i-th column (i=1, 2, ...,k) and inscribing x,, X, ..., X4, as first
column. Thus

Xa 1 ot | 1 S |

xl al “ew ai_l al‘+l wew at

PR 2 '] 2 e |
M; =[x, R I I ok

Xey G ... ol .o
Furthermore we define a polynomial f(x,, x,, ..., X;_,) by

S(Xo, Xyy iey Xy—y) = D*F 1 M.

i=1

In case k=2
S(xg, X1) = (Xo0 — X N Xg s — Xy)

and if g(x) is irreducible over the rationals and K=Q(2;) is a quadratic number
field then it can be written in the form

J(xq, X1) = Nigo(&) = N(Q),
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where {=x,a,—x;. On the other hand
(X0, X1) = X — (ot + ) Xy Xo + % 22 X§ = X7 — A1 X1 Xo— A X5
and one can easily check by induction that
f(Gn'! Gn+1) = C(_ A!_)"
for any integer n(=0), where C=f(G,, G,). Thus we have
N(©) = C(—4y)
for {=G,2,—G,,,. Itis a well-known identity in the form
G§+1_AlGn+lGn_AﬂG§ = C(—4y)"

which was proved first by E. Lucas for case G,=0, G,=1 (see L. E. DICKSON

[1], p. 396).
In the following we extend this result to arbitrary integer k and give some appli-

cations of it.

2. Results

Let k=2 be an integer. Using the previous notations we prove:

Theorem 1. The polynomial
k
S0 %55 5000 Xp 1) = DR E M;

in variables x,, x,, ..., X, has rational integer coefficients and the coefficient of
Xk, is one. Furthermore

f(Grn GJH-I! veey Gn+.l:—l) — FO[(_ l)."_l"4ll_]'l
for all integer n=0, where
Fy =f(Gos Gry ooy Gp—3p)-

Let the characteristic polynomial g(x) of the sequence G be irreducible over the
rationals with roots «=uo,, %, ..., %. In this case K=Q(«) is an algebraic number
field of degree k and the algebraic numbers 1, o, o ..., «* ! are linearly independent
over the field of rational numbers, furthermore the numbers

(1) = aptax+...+a,_ 2!

with rational integer a;’s are algebraic integer in K and the set of &’s is an order of K.
The following statement is true.

Theorem 2. [f the as (i=0,1,...,k—1) in (1) have the form

k=i=1
;= Gpip-i-1— 121 A;Gyig-i-j-15
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where n is an integer, then the norm of & is
(2 N(&) = N(&) - [(—1)*4,]",
where &, is a special case of & determining a;’s by n=0.

Norm form equation (2) can be used to express the units of algebraic number
fields. A simple case is the cubic field with negative discriminant. In this case, if
K=Q(x), among the conjugates of « there are one real and two complex algebraic
number and the number of the fundamental units in K is one. Let @ be one of the
fundamental units. w is an algebraic integer of degree three and so K=Q(2)=Q(w).
Furthermore K does not contain any roots of unity except + 1. Thus all units of K
are of the form &= t+w". For the units of K we prove:

Theorem 3. Let K=Q(w) be an algebraic number field of degree three with
negative discriminant. Suppose ® is a fundamental unit in K with minimal defining
polynomial

h(x) = x*— Ax*— Bx—C,

where |C|=1. Let G={G,}j="... be a linear recurrence of order three defined by
initial terms G,=G,=0, G,=1 and by recursion

G, = AG,_,+BG,_;+ CG,_;,
which is also defined for negative subscripts since
G, = (Gy43—AG, 42— BG,,,)/C
is an integer by |C|=1. Then the all units in K are the numbers
¢ = £[G,0*+(G,+1—A4G,) ©+(G, 42— 4G, 4, — BG,)] = *e,,
where n runs over the integers.

We note that C. KLIORYS [5] also has given a connection between the units of
some algebraic number fields and linear recurrences. He showed that in algebraic
number field Q(w) of degree 2k, where @ is a root of polynomial x* —x*—1, the
powers of @ can be expressed in the form @"=a,+ a0+ ... +ay _,©* ', where the
a;’s are Fibonacci numbers.

In [4] we gave a diophantine representation of the terms of generalized Fibonacci
sequence which was the generalization of the results of J. P. JoNES [2, 3] on Fibonacci
and Lucas sequences. These results can be extended to some third order linear recur-
sive sequences, too.

Theorem 4. Let K=Q(w) and G={G,},;)=_. be an algebraic number field of
degree three and a third order linear recurrence respectively defined in Theorem 3 and
let f(xq, X1, Xs) be the polynomial defined in Theorem 1. Then the set of the nonnegative

values of function
F(x,y,2) = [2—(f(x, y, 2))*] - |x|

is the set of the absolute values of the terms of sequence G, as x, y, and z run over the
integers.
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3. A lemma

In order to prove the theorems we require a lemma.
Let D be the k Xk determinant defined in section 1 and let D) be the (k —1) X
X (k —1) determinant obtained from D by rejection of the i-th column and the j-th
row (1=i, j=k). Thus
1 X, | S WS |

R TRSEC S P

DM =i tal=® al...ol>f olch ool
O R SN SRS

Tl O R T
In case j=k we denote D{¥) by D, i.e.
D® = D).
Using this notations, we prove:
Lemma. For every indices i, j (1=i, j=k)
3) DY) = D . S0,

where S{*=7 denotes the elementary symmetrical polynomial of degree k —j of variables
Olgy Hgy +0eg Of; 7, n'.,-+l, iy fx,‘ for k'-'j}o and S:o}= [ B

ProOOF. The statement is obviously true in cases j=1 and j=k, furthermore it
can be easily seen for k=2 and k=23 with arbitrary / and j. Thus we can suppose
that i>1, l<j<k, k=3 and it is enough to prove that

D}ff” = D}"‘”-S,!“""‘
implies equation (3).

Subtracting the first column from the others in determinant D{*), we get
1,0,0,...,0 as first row and so D"} is equal to a (k—2)<(k —2) determinant with
row-vectors

v, = (0g—0f, 05 =0, couy Of—y—0f, 043 —00], ..., 04 —0})

(1=t=k—1,1#j—1). The column-vectors of this determinant are divisible by o, — 2,
Olg=—0lyy ouuy Oy —0, Ojpq—04, ... and o, —a, respectively, therefore
@) DY) =D [ (a—ay),

2=rsk

r#i
where D’ is a (k—2)X(k—2) determinant. The coordinates of the row-vectors
0 =(Cp,25 1,85 ---s Ct,i=15 Cri+15 ---» Co.x) Of determinant D’ are

Cr =0t 4o % +... 4,02+ o) ?

(2=r=k, r#i) and so

’ AR i T T | i1 =1 -1
—on vy = (g, 8™, ..., T, dTl, e 0 )

Uy
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for 1<t#j and
vi—aivj_s = (0 +af 20y, o "+ a2y, ...
wos ot of 2, afttaf Ry, ..., af a2y
if j#2. The first row of D" is vi=(l, 1,...,1) in case j#2 and v;=(a+02,
Og+0%, ..., % +a;) incase j=2. From these follows, using the elementary properties
of determinants and our notations, that
D’ = D{*3!)_,+o - D3
and the determinants on right are constructed by oy, oy, «ooy %51, %iyy -oey Bge
By our supposition we have
&) D’ = D3V . §{¢=) 4o . DIV . §{¢=1-1)

where S/® is the elementary symmetrical polynomial of degree ¢ of variables a,, oy,

ey a‘_l, RI'I-I’ wany a,‘.
But
DV [T (a—ay) = DM
2=r=k
r#i

and
S k=D 4o, . S{*-1=D) = S{k=J)

so by (4) and (5) we get
D® = D . Sk-n,

Thus the Lemma is true for every integer k=2.

4. Proofs of the theorems
PrOOF OF THEOREM 1. The discriminant M, is a linear form of variables x,, x,,
...y Xg—; and, by the Lemma, the coefficient of x;_, (I1=j=k) is
(—1y-1.D) = (—1)y-1. D" . S{k=D,
From this follows, using the identy
from =
i=1

that the coefficient of xf°.xp...xfxp (0=r,=k, ry+r,+...4r,_,=k) in the poly-
nomial f(x,, x;, ..., X;3_y) i

(_ l)"-Q(ru, LS TITE rk-l)’
where ¢=0-ry+1-r,4+2-ry+...+(k—1)-r,_, and the value of Q(ry, ry, ..., Fx—y) is
g e ik —
Z(SH-1.SE-Y ... S,-:‘n V)...(S-SD ... S,‘r"k’ﬂ).
The summation is extended to such permutations iy, iy, ..., iy coes tiy oy ooy by,

of elements 1, 2, ..., k that the elements (iy, i, ..., i), ... and (t;, t3, ..., 2, _,) Tespec-
tively are not permutated among themselves. The sum is a symmetrical polynomial



278 Péter Kiss

in variables a,, a,, ..., o, therefore f(x,, x,, ..., X, _,) really has integer coefficients
and the coefficient of xf_, is

(-1».-00,0,...,0,k) = S{2.5{® ... S¥ =1
since S{”=1 and g=(k—1)-k is an even integer.
We have to prove yet the identity
S(Gpy Gpias ovs Gua—1) = Fol(— 1) 724,)"
It is enough to prove that
S(Grs1s Gaias -s Guad) = (= 1)*24, - £(G,, Gus1s -+ Gysr-1)

for any n=0, since the statement is trivial for n=0.

Let M denote the k Xk determinant which we obtain from M, replacing the
element x,, Xy, ..., Xs—y by G,, G4, ..., G, 4, respectively. Let us consider the
determinant

G T ik 19 e

M0 = Guia O oo Oy Opyy .oo O
k=1 -1 k-1 k-1
G.Il"l'k al see d?_l a[+1 s {!k

and let us subtract the first, second, ... and (k — 1)-th row multiplied by 4, _,, 4;_,, ...
and A, respectively from the k-th row. Since

Guir—A1Gpypi-1— o —Ap-2Gpya— A4 -1 Gy = 4, G,
by the definition of sequence G and
m}_l_Ala}_z-‘...-Al._gaj—At_l =
1 T A A
= ?‘—j-(alj‘—Alaj l—*“_At—laj_Ak)+;f- = -&—;-
for j=1,2,...,k by the definition of «;, furthermore
() A= (D a0,
we have
ai Y ol i 8wtk
Srns . . onlk Goss 08 ol
M) = 4,1 : : : = (= 1)+la,| : 1 : =
Gusa-1 oo™ Gesi=y " us 071
R 1/ay ... 1/a, O, 1 P |
G, | PN |
Gosr1 o ... 04

= (DM (1) Gpes & .o0f | =M™,

-1 k—1
Guer-1 0 1. 0f
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Thus, using identity (6), we get
k k
J(Gsi1s Gupas 550y Gyig) = v, H M+ = D% ” ’IiMi(”) =

i=1 iml
k

=0y dg ... ak'Dg_k' HMF“] = (- l)knlAk'f(Gn! Gn-l-ls rery Gn-l-k-l)s

im=1
which proves the last statement of Theorem 1.

PrOOF OF THEOREM 2. First we determine the elementary symmetrical polyno-
mial S{” (0=r=k—1) by « and by the elementary symmetrical polynomials A4,,
—Ay, ..., (—1)¥*14, of variables «,, a,, ..., %,. On account of symmetry we consider
only the case i=1. If 1=0 then, by the definition, S{®=1, furthermore obviously

S{l) = Ay~ =—(4—A,)

and
S{zi = —Ag—aIS{“ = af—Alle—Az.
In general we have
@) S§i” = (=)' (q— Ay~ ' — Ay — ... — 4,4, —A)
since if (7) is true for r=r—1(=1), then
S = (=114, — 0 SV = (— 1y 4, — (= 1) oy — Ay o — ... — 4, ) =
=1y (-4 —...—4,_,0,—4,).

Using (7) and the results obtained in the proof of Theorem 1, we get

k
M= J(- 1)1—1}_){&}8{&—-1)3‘1_1 =

j=1
K
= (=1)*"1D» 21' (=40 = =y ya Oy~ A PRy =
J=
X O o k—i—1 )
= (= 1)k-1Df "2‘4; [xl—i—l_ 21' ijk-i—j—-l] % .
= J=
If x4, Xy, ..., X, are rational integers then
k-1 k—i—1 :
= 2'; (xk-—i—l_ 12 ijk—i—j—I] oy
i =1

is an algebraic integer in the number field K=Q(z,). Denote the conjugates of &
by EM=¢, @ ., &R, Now, by the definition of the polynomial f, we get

k
P 5y s ) = D8 .]ZM-' =,
= Dk [T 11D EO] = DDA [0 = N
=1

i=1

and from this, by Theorem 1, the statement follows.
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PROOF OF THEOREM 3. We can use the previous results taking into our conside-
ration that in thiscase k=3, o, =0 =w,, s =0,, t3=w4, A;=A, A;=B, and A;=C,
where ®,, w,, w, are the roots of the polynomial A(x).

By the results, obtained in the proof of Theorem 2, we have

M{" = D{® -¢,,

where ¢,=G,0*+(G,. ., —AG,)0+(G,, ;—AG,,.,—BG,). We have seen in the proof
of Theorem 1 that

M) = oM™
which implies the equality

M® =" M.
But
3. 43

(3) — O —
Dj M W, @

and so

8, = o,

which proves the statement.

PRrROOF OF THEOREM 4. First we show that f(x, y, z)=0 for rational integers x, y, z
if and only if x=y=z=0. If f(x, y,2)=0, then

® M; = D [xw}+(y — Ax)w; +(z— Ay —Bx)] = 0

for some i (i=1,2 or 3). But D{®=0, since the roots of /(x) are distinct, and o,
is an algebraic integer of degree three, therefore (8) implies the equations

x=y—Ax=z—Ay—Bx =0,
thus x=y=z=0. If x=y=z=0 then obviously f(x, y, z)=0.

The polynomial 2 —(f(x, y, 2))* for integer x, y, z (not all zero) is non-negative
if and only if

&) f(x, 5, 2)= £1.
We have seen in the proof of Theorem 2 that

f(x, p, 2) = N(x0*+(y—Ax)o+(z—Ay—Bx)) = N(&)
where ¢=xw*+(y—Ax)w+(z—Ay—Bx) and N(§)=Ng, () with K=Q(w),
therefore (9) holds if and only if ¢ is a unit in the field K. But, by Theorem 3, £ is a
unit in K if and Onl}' if (xs Y, z):(Gn!GrH-l’ Gn+2) or (x! Vs Z)Z(—G,” —'Gn+1|
—G,.9) for some integer n and so from F(x, y, 2)=0

F(x, y, 2) = |x| = |£G,| = |G,|

follows. This implies the statement since the function F(x, y, z) takes all values |G,|,
namely F(G,, G,;1, G.12)=|G,| for every integer n.



On some properties of linear recurrences 281

References

[1] L. E. Dickson, History of the theory of numbers, vol. 1., Chelsea Publ. Co., New York, 1952.

[2] James P. Jones, Diophantine representation of the Fibonacci numbers, Fibonacci Quart. 13
(1975), 84—88.

[3] James P. Jones, Diophantine representation of the Lucas numbers, Fibonacci Quart. 14 (1976),
134.

[4] P. Kiss, Diophantine representation of generalized Fibonacci numbers, Elemente der Math. 34
(1979), 129—132.

[5] C. KLiorys, Fibonacci number identities from algebraic units, Fibonacci Quart. 19 (1981), 149—
153,

PETER KISS
TEACHER'S TRAINING COLLEGE DEPARTMENT OF MATHEMATICS
LEANYKA U. 4. H—3301 EGER, HUNGARY

( Received Oktober 2, 1981.)



