Local polynomials and functional equations

By LASZLO SZEKELYHIDI (Debrecen)

1. Introduction. Polynomials on groups play an important role in the theory of
functional equations because in most cases the general solution of a linear functional
equation can be described by means of polynomials. Results of this type can be found
in [2], [7], [8], [9],[10]. However, in some applications the equations do not hold for
all values of the variables, but only for values in some domain and the above men-
tioned results cannot be directly applied. In this paper we extend the main results
of the theory to a local direction by introducing the notion of local polynomials on
topological Abelian groups. Using this notion we solve a general local functional
equation and apply our results to a local mean value property.

In this paper C denotes the set of complex numbers. If G is a topological Abelian
group and H is an Abelian group, further Uc G is a neighborhood of zero and nis a
positive integer then a function A: U"—H is called locally n-additive, if

A(Xys ooes Xygmps XgHXys Xigns ey Xp) = AXyy cos Xymgy Xis X5 o009 X+
s i N W Xrisns svis Xa)
holds for i=1, ...,n whenever X, ..., X;_1, Xi, X;s Xi+X;, X415 o0y Xo€U.

We use the notations
A(t)(x! y) - A (xl’ Ay xn)

with x;=x for i=1,...,k and x;=y for i=k+1, ..., n whenever k=1, ..., n—1
and x, yeU. Further let
A(O)(x, y) — A(x.h weey xn)

with 2=y for i=1, ..,

A (x, ¥) = A(Xyy cc0s X))
with x;=x for i=1,...,n and

A" (x) = A" (x, y)
for all x, yeU.
Let DG be an open set and f: D—~H a function. Then f is called a local
polynomial of degree at most n at the point x,€D, if there exists a neighborhood
UcG of zero and there exist A,: U*~H locally k-additive symmetric functions
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(k=0,1, ...,n) such that U+x,cD and

SG) = Z AP (x—x0)

k=0

holds whenever xc¢U+x,. (Here U°=U and we mean by locally C-additive func-
tion an arbitrary constant in H). If f is a local polynomial of degree at most n at
every point of D, then fis called a local polynomial of degree at most n on D.

We shall use the difference operators defined by

4d,,,..5.S(x) = 2 )Myt

0=iy=<..<ig=n

whenever x+y; +...+y,€D. In particular we write

5@ = 3 () ook

whenever x+kyeD for k=0,1, ..., n

2. Characterization of local polynomials. If in the definition of locally n-additive
function U=G, then we simply call 4 n-additive. Similarly, if in the definition of
local polynomials D=U=G, then we call fa polynomial. It is wellknown (see [2])
that polynomials of degree at most n can be characterized by the functional equation:

Al"]....,y,“,lf(.X) =0

for all x, y,, ..., ¥,41€G whenever H is divisible and torsion-free. Our first theorem
is a similar characterization for local polynomials. In order to prove it we need a
simple lemma which can easily be proved by induction on 7 (see [2]):

Lemma 2.1. Let G be a topological Abelian group, H an Abelian group, Uc G
a neighborhood of zero, n a positive integer and A: U"—~H be a locally n-additive
function. Then

i) AM(x+y) = > (:) A® (x,y), whenever x,y,x+yeU;
k=0
if k=n
.e "k} —
i1) 4y, ..nAV (x) {n!A(y,, s Va) if k =n, whenever

x-{-y,-l—l- sae +J"ik€U for 0 = il = i TS ’-.I: =n

Theorem 2.2. Let G be a topological Abelian group, H a divisible and torsion-free
Abelian gorup, n a nonnegative integer, D G an open set and f: D—+~H be a func-
tion. Then f is a local polynomial of degree at most n on D if and only if for every
xo€D there exists a neighborhood UcC G of zero such that U+x,C D and

A’l- ----)’nolf(x) =0

whenever X—Xg, V1s «ies Yus21€U.
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ProoF. (see [2]). The necessity is obvious by lemma 2.1. The sufficiency we prove
by induction on n. For n=0 the statement is trivial. Supposing that it is proved for
k=n—1 we prove it for k=n.

Hence we fix an x,€D, a neighborhood Uc G of zero for which U+x,cD
and assume that

4y,...y0ii /(X)) =0

whenever x—x,, ¥y, ..., Yo41€ U. It follows that for all y,, ..., y, in U, the function
4, . ...f1s constant on U+x,. Let

1
An(yls seey yu) = ;Ayl.._..yﬂf(xo)-
Obviously A, is symmetric. If y, y;, yi+¥1, Vo, ...y Vo€ U, then
Aa(yl_{_.'-)l! y2! L . | yn)_Au(yla y21 sy yn)'_An(yl' yz, wee gy }’n) —

1 1
= E(Ar1+ft_dn_dfl)dm---»-ynf(xﬂ} = Edﬂ-}l-y:-uu)'nf(xo) =0

and hence A, is locally n-additive. By lemma 2.1. we have
Flsoeas ,"A,‘,"'(x—x") — n!An(yls ---,}’n)

whenever x—x,, vy, ..., ¥,€ V¥, where VU 1is an appropriate neighborhood of
zero. Let D,=V+x, and

g(x) = f(x)— A" (x—x,)

whenever x€D,. Obviously for every x,€D, there exists a neighborhood U,cD
of zero such that U,+x,c D, and x—x,, ¥y, ..., ¥,€ U, implies x+y,+...+y,€D,
further

4,,..8%) =4,, ., (x)—4,, ., 4" x—X)=

= 1 Ay (D1, ooy Y =1 Ay(Dy, ey 3) =O.

Hence by induction g is a local polynomial on D, of degree at most n— 1, and our
theorem is proved.

3. The local extension property. In this paragraph we deal with the following
problem: when has each local polynomial on G a unique extension to a polynomial?
We say that the topological Abelian group G has the local extension property with
respect to the Abelian group H, if there is a base % for the neighborhoods of zero in
G with the following property: if Ue# and A: U—~H is locally additive, then A
has a unique extension A: G-+H which is additive. A base % with this property
we call an extension base.

Lemma 3.1. Ler G be a topological Abelian group having the local extension pro-
perty with respect to the divisible and torsion-free Abelian group H with the extension
base AU. If n is a positive integer, UcWU and A: U"—~H is a locally n-additive sym-
metric function, then A has a unique extension A: G"—~H, which is n-additive and
symmetric.
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PROOF. We prove by induction on n. Suppose that we have proved the statement
for k=n and let A: U"*'—~H be a locally (n+ 1)-additive symmetric function.
Let xeU be fixed and (y,, ..., ¥,) ~B(x, ¥y, ..., y,) be an n-additive symmetric
extension of the locally n-additive symmetric function (), ..., ) =A(X, V1, o0y Vo)-
If x,y, x+y€U then the functions (yy, ..., ¥)—=B(X, Y1y coos V) + BV, Vis covs Vi)
and ()y, .., V)= B(x+y, »y, ..., y,) are n-additive symmetric extensions of the
locally n-additive symmetric function (yy, ..., ) ~A(x+y, »1, ..., ¥, and hence
by the uniqueness it follows that B is locally additive in the first variable. Now fix
Vis s V,€G and let x—B(x, y,, ..., y,) be the additive extension of

x = B(x, ¥4y s Yu)-
Then for every y;, y,6G the functions

* F B(.‘I.', Yis ovs Vi1 yi+fb Yit1s +oos yu)
and

X = g(xs Yis cees Viers Jis .VH 13 *==3 )’n)+§(x; Yis -oos Vie1s y-i! yi+ls teey ,Vu}
are additive extensions of the locally additive function '

e S ¥ B(-’C, P15 voos Vi1 YViFFis Visas oo Yo

hence they are equal. It means that B is additive in each variable and by symmetri-
zation we have

1
(n+1)! 151‘,#%5:&1

which is obviously a unique (n+ 1)-additive symmetric extension of A.

z(}’ls}’s‘ ey Yut) = E(yi,-yi,- ser g Vicas)

Lemma 3.2. Let G be a local Abelian group having the local extension property
with respect to the divisible and torsion-free Abelian group H and n be a positive in-
teger. If D G isanopen setand f: D— H is a local polynomial of degree at most nat the
point x,€D, then there exists a neighborhood U G of zero and a unique polynomial
P: G—+H of degree at most n such that U+x,c D and

f(x) = P(x—x,)

whenever x¢U+Xx,.

PrOOF. The existence of P is a consequence of lemma 3.1., and we have to show
only the uniqueness. Let % be an extension base of G and suppose that P, Q: G-H
are polynomials of degree at most n such that P(x)=Q(x) whenever xcU for some
Ued%. It means that

P(x) = 2 AP (x)= 5 B (x) = Q)
k=0 k=0
holds for xcU, where A, Bi: G*—~H are k-additive symmetric functions (k=
=0, 1, ...,n). Let V< U be a neighborhood of zero for which V€# and x, y,, ...,
v,V implies x+y,+...+y,€U.
Then by lemma 2.1. we have

1 |
An(yla ey yn) — de;.....y.‘Al(vm(x) — EA)*;. ...,y.,BJ(l”J (x) Pt B,.(}’l, veny yu)
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whenever x, y,, ..., y,£V. Thatis, 4, and B, are the same on V". By the local exten-
sion property of G it follows A,=B, and continuing this procedure we have P=0Q.

Theorem 3.3. Let G be a topological Abelian group having the local extension
property with respect to the divisible and torsion free Abelian group H and let DC G
be an open and path-connected set. If f: D—H is a local polynomial of degree at most
non D, then f is the restriction of a unique polynomial P: G—+~H of degree at most n.

PrOOF. The conditions of the theorem and lemma 3.2. imply that for every
x€D there exists a neighborhood U, of the zero and a polynomial P,: G—~H of
degree at most » such that U,4+xcD and

J»)=P.(y—x)

whenever yeU,+x. Let Q.(y)=P,(y—x) whenever x€éD, yeG. Then Q,:G—+-H
is a polynomial of degree at most n. First we show that (U,+x) (U, +y)#0 implies
Q.=0Q,. Let % denote an extension base of G and let z€(U,+x)"\(U,+y), Weu
such that W+zc(U,+x)"\(U,+y). For all wée W we have w+z€U,+x and
w+z€U,+y, hence

Q.(w+z2) =P, (wtz—x) =f(w+2) = Py(w+z—y) = Qy(w+2)

that is, the polynomials w—Q,(w+z) and w—-Q,(w+z) are equal on W, and by
the local extension property they are identical: Q,=Q,. Now let x, yeD. We have
to show that Q,=Q,. As D is path-connected, there is a continuous function
@: [0, 1]-D with ¢(0)=x, @(1)=y. The set R=range ¢ is a compact connected
subset of D and the open sets U ,+x for x€éR cover it. Hence there exist elements
X1, ..y X, €D such that (U, +x)N(U,,, , +x;.1)#0 (i=1, ..., k—1) and x€U, +x,,
yveU, +x,. It follows that Q,=Q, =0, =0, and the theorem is proved.

Theorem 3.4. /f G is the additive topological Abelian group of a locally convex
topological vectorspace then G has the local extension property with respect to any
Abelian group.

PROOF. Let % be the set of all balanced absorbing neighborhoods of zero in G.
Then % is a base for the neighborhoods of zero. Let H be an Abelian group, Ue#
and A: U-—H be a locally additive function. First we extend A to the set 2U by the
formula

A, (x) =24 [%]

whenever x€2U. As U is balanced, hence Uc2U and obviously A, is a locally
additive extension of A. Continuing this process we have the locally additive functions

A,: 2"7'U~H with A, , is an extension of 4,. As U is absorbing, ) 2"U=G
n=0
and the function 4 defined by  _
A(x) = A,(x)

whenever x€2"*1U is a well-defined additive extension of A. For the uniqueness let
A, B: G—+~H be additive extensions of 4 and let x¢G. Then n—'xeU for some
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positive integer n and hence
Ax) = nd(n"'x) = nA(n"'x) = nB(n='x) = B(x)

which proves the theorem.

4. A local functional equation

Theorem 4.1. Let G be a topological Abelian group, H a divisible and torsion-free
Abelian group, ¢; a local isomorphism of G (i=1, ...,n+1). Let DG be an open
set and f, fi: D—~H be functions (i=1, ..., n+1) for which

n+1

(D O+ 2 filx+0:(») =0

holds whenever x, x+@(y)eD (i=1, ..., n+1). Then fis a local polynomial of degree
at most n on D.

PrOOF. Suppose that U, G is a symmetric neighborhood of the zero contained
in the range of ¢, for which ¢,(x), ¢;()) and ¢,;(x+)) is defined whenever x, yeU,
(i=1, ...,n+1). First we prove the following statement: for every x,€D there
exists an open set D,cC D containing x, and there exists a neighborhood VcG
of zero such that for all 7€ ¥ there exists s€ G with the property, that x, x+¢,())€D,
(i=1, ...,n) implies x+1t, x+t+¢,(y+5)eD (i=1,....,n+1) and t+¢,,,(5)=0.
Further the sets D;, V and the element s are independent of f, f; (i=1, ..., n+1).

Let ¥;c U, be a symmetric neighborhood of zero for which ¥+x,c D. Let
V,cV, be a symmetric neighborhood of zero such that W+ ¥ c¥. Then let
V,c¥ be a symmetric neighborhood of zero for which Va+ Vo 00, (V).

Let D,=x,+V;, then we have D,+V,c D and W—ﬁ @i '(V;) is a symmetric
neighborhood of zero. Let W C W be a symmetric nelghborhood of zero such that
Wi+W,c W and let V= U o.(W)NU,. For all teV we have r€¢U, and hence

there is an s such that r+qo,,+1(s) 0, that is sco, (V) W;. Then ¢,(s)cp,(W))
and

t+@;(Depi(W)+o;(W) Cc o (M+W) coW) ¥V (i=1,...,n).

Let x, x+¢;(»)€D, (i=1,...,n), then x+tED,+VcD,+V,cD. On the other
hand, x+t+@,(y+s)=x+0,())+t+o.,(s)eDy+Vic D+ V,D (i=1,...,n). Fi-
nally, x, x+¢,(»)€D; implies ¢,(V)EV;+VoC 00,11 (V) and then yeo. ! (W),
@ni1(0EV,, which means x+¢,,,(»)ED,+V,cD.

After proving this statement we can write x+ for x and y+s for y in (1) ob-
ing

@ S0+ 3 S50 0 +0iO) o (340012 () = 0.
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By subtraction it follows
Arf(x) 2 3 12; A¢+o,(:)f;(x+ (oi(y)) =0

for all x, x+¢;(»)ED, (i=1,...,n).
Repeating this argument n+ 1 times we get an open set D,.,C D containing x,
and a neighborhood V,.,cG of zero such that

Bey,..tae S) =0

whenever x€D,., and #;, ..., 1, 11€V,1;.
Then letting U=(D,,,—x,)(¥,,, the conditions of theorem 2.2. are satisfied,
hence our theorem is proved.

5. A local mean-value property. Let G be a topological Abelian group, UcG
a neighborhood of zero and ¢: U—U a continuous local homomorphism. Suppose
that there is a positive integer n for which ¢"*'(x)=x holds whenever x¢cU. Ob-
viously in this case ¢ is a local isomorphism with a continuous inverse, and ¢ (U)="U.
We call ¢ a local cyclic isomorphism of degree n+ 1. Suppose, that the elements
x+y, x+¢(»), ..., x+@"(y) are defined for some x, y€G. Then the set {x+y,
x+@(y), ..., x+¢"(»)} is called a regular ¢-polygon with center x.

Let D G be an open set and H a divisible and torsion-free Abelian group. The
function f: D-H issaid to have the ¢-mean-value property on D, if the arithmetical
mean of the values of f on every regular ¢@-polygon in D is equal to the value of f at
the center of this polygon. More precisely, if then

1 n
S0 = o 2 f+ 64 0))

The following two theorems are consequences of the preceding results.

Theorem S.1. Let G be a topological Abelian group, H a divisible and torsion-free
Abelian group, n a positive and ¢ a local cyclic isomorphism of degree n+1 on G. Let
Dc G be anopen set and f: D+ H a function having the @-mean-value property on D.
Then f is a local polynomial of degree at most n on D.

Theorem 5.2. In the preceding theorem, if G has the local extension property with
respect to H and D is path-connected, then f is the restriction of a polynomial of degree
at most n.

We note that theorems 5.1. and 5.2. are generalizations of well-known results
concerning the classical mean-value property in [1], [3], [4], [5], [6], [7], [11].
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