On characterizations of the normal law in Hilbert space

By ISTVAN FAZEKAS (Debrecen)

1. Introduction

KHATRI [5] gives some characterizations of multivariate normality through linear
regressions and remarks that these results are valid on Hilbert space too, if the origi-
nal conditions are replaced by conditions similar to those given by KuMAR and
PATHAK [7]. But it is not necessary to change the conditions of Theorem 2 of [5];
it is true in Hilbert space in its original form.

The aim of this paper is to point out that most of the results and methods of [5]
are ““dimension free” (see [3] and [7]). Those lemmas of [5] that are valid only in finite
dimensional spaces are replaced by lemmas which are valid in finite dimensional spa-
ces as well as in Hilbert spaces.

2. Notations and preliminary lemmas

Let H, H,, H, etc. denote real separable complete inner product spaces, that is
separable Hilbert spaces or finite dimensional Euclidean spaces. For the sake of brev-
ity these spaces are called Hilbert spaces. The inner product is denoted by (.,.)

1

and the associated norm by |.|=(.,.)?. The adjoint of a linear bounded operator
A: H,—~H, is denoted by A’. If we consider hcH as the following map from
R into H: h(x)=xh (x€R, where R denotes the set of real numbers), then A’
is the following map from H into R: h’(a)=(h, a) (a€ H). In particular for fixed
hy, hy€ H; hihy={h,, hy) and h,h; is the following operator: hhs(a)=_hy, a)h,=
=hhya (a€H).

If H= [] H;, where H,, ..., H, are Hilbert spaces, then H is a Hilbert space
i=1

with the mner product:

n

(a, b) = !Z; (@i, b), a=(a)i-y, b= (b)-,€H.
There is an 1somorphism between the algebra of bounded linear operators of H and
the algebra of matrices (4,)), -, where A;;: H,—~H, is a bounded linear operator
(¢,j=1, ...,n). Through this paper /; denotes an appropriate identical operator.
Let & be a Hilbert space valued random variable (r.v.). EE, the expectation of &
is defined by the Bochner integral of . The covariance operator of & is D¥=
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=E[(E—ES(E—EE)). If E|f|*<=<, then D*¢ exists. The conditional expectation
E(£].) 1s defined in Scalora [8]. £ 1s said to have a normal distribution if for each con-
tsant vector A, the real-valued r.v. {(h, &) has the normal distribution.

Lemma 1. Let ¢ and n be H-valued r.v'.s, E|&|<ee. E(¢|y) is constant if and only
if
for each tcH.

PrOOF. See [4] and [2].

Lemma 2. (See [5].) Let & and n be independent Hilbert space valued r.v'.s,
E|é|<oe, Eln|<ee.

(a) If E(E+nin) is constant, then n is degenerate.

(b) If E(n|¢+n) is constant and the characteristic functional of & nowhere vanishes,
then n is degenerate.

PROOF. (a) is trivial; (b) follows from Lemma I.

Lemma 3. (See [6].) Let & and (n, {) be independent Hilbert space valued r.v’.s.
Assume that the characteristic functional of & nowhere vanishes. If &+n and { are
independent, then n and { are independent.

PrOOF. The proof is based on elementary properties of the characteristic func-
tional.
Lemma 4. (See [5].) Let H= HH, and let A=Ayy=(A4;));,}-1 be a bounded

im]

linear operator of H. Assume that A ,=(A;))} j=, is an invertible linear operator for
r=1,2,...,n—1. Then there exists a decomposition A=TS, where T=(T};); .,
is lower triangular with

e |
T;’i = Aii_(Al'l! ey Ai.i—l)[A(i-l)]“l(A;I’ *niy A;—l.a’)i ™ Aii_k‘_zl Tikski

(i=2,3, ...,n). T, is invertible for i=1,2,...,n—1. (If A, is invertible, then T,,
is also unernbie ) S=(Si)i.}=1 is upper rrmngu!ar and S;;: H;—~H,; is identical
(i=1, ...,n).

Proor. For k=2

[An Am] [Au ] [fn Aﬁlez]
Ay Age Ay Azz_AzlAn Ay 0 Iy,

1s the required decomposition. Then one can proceed by induction.

Lemma 5. (See [5].) Let  and (&, n,, ns) be independent Hilbert space valued
r.v’.s and let { have normal distribution. Let {,={+A,&+n,, E|(,|<e. Assume
that E((,|{— B\ &, 1y, 1) =0, where A, and B, are bounded linear operators satisfying
the relation AB,= BA, for some operators A and B. Then ({, B(,) is normally distrib-
uted and ({, B(,) and (n,, ns) are independent.
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PrOOF. Let u=A,&+n,. From the conditions of the lemma
E({+pu|AL—Bu, ny, 1) = 0.
By Lemma 1

E{(C‘i'#) exXp [l (AC-B,N, t>+i<’h! t1>+i<'13$ ’2)]} =0.

Let fi(s) and fy(s, t;, t;) denote the characteristic functional of { and (y, 1y, 1)
respectively. Then

dji(s) _f.z(_ BJ'I, rl, r2)+ afé(s! rl! tﬂ)

3 Lo Js Si(4) =0,

s=—B't

where df‘;:) and il 2“;,):_1’ ) denote the Fréchet derivative and the Fréchet partial

derivative (cf. [1]) resp. Since { is normally distributed we have (see [9])
y 1
A9 = expitm, )1 (5,9).

Therefore from the above equation

B(im—ZA') fu(—B't, 1y, 1) = DaCEL fut),

ot

This shows that
fi(=Btit,t) = exp{i(Bm, t)—%(BZA’t, r)}g(t,, 13).

Hence Byu is normally distributed and Bu and (1, n,) are independent. This proves
the lemma.

Lemma 6. (See [5].) Let { and (u, ) be independent Hilbert space valued r.v’.s.
Let
{o = AL+ (A—Dp,

where A is an arbitrary bounded linear operator and I is the identical operator. Assume

that E|(,[*<< and
(1) E(oll+p,m) =05

2 E(CololC+u,m) = Z,

where X is a constant operator.
Then A and (A—1I)pu are normally distributed. If A is invertible, then {, (A—=Iu
and n are independent.

PROOF. Let ¢,(7) and ¢,(t, ;) be the characteristic functional of { and (u, n)
respectively. With the help of Lemma 1 from (1) and (2) one can get

@) 4280 o 1, 1) +a-n 221 g, )= 0
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and

dr

e, (1)

)|

Aoyt 1)+ A

+(A _I)a¢2(r Itl) [d(PlU)] A’+(A I) aztpsfia r1) (A—I)’fpl(!) =

==2¢, (1) py(1, 1y).

From (3) and (4) we obtain for 7 and #, in some neighborhood of the origin:

do,() 1 do()[de)) 1 _ o
et 9,(1) dt | dt 1 gi()

(5) A
and

Fou(tt) 1 “2b=B prs(r ty) [c’kos(f ) e VIO
o @u(t, 1) P31, 1)
From these equations we have

(A-1)

d®In[p,(A'D)] ’
T SRk
and
Fin{glI—AVLtl} __ 51 4

0%t
By the theorem of Marcinkiewicz (see Lemma 2.4.3 of [4]) AL and (/—A)pu

are normally distributed.
If A is invertible, then from (5) we have

@, (1) = exp {i {m, r)—%{A‘lz‘t, r)}
In this case (3) can be rewritten in the form

(iAm—Zt)@y(t, t)+(A—1) M = 0,

ot
Let t=(I—A)’s, then
[iAm—Z(I— A)s]Ps(s, 1,) —3-—"1%9 =0,

where @,(s, 1) = (pz[(! A)’s, t,] is the characteristic functional of [(/—A)u, n).
Its general solution is

Pa(s, 1;) = exp {i (Am, s)— -;— (E(I—-A)s, s)} W (ty),

where ¥ is a function of #, only. This shows us that if 4 is invertible, then (/—A4)u
and n are independent. Thus the lemma is proved.

In Theorem 2 we shall need the following facts on conditional distributions. Let
H, and H, be Hilbert spaces and let (£, ) be a H,X H,-valued r.v. Assume that
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(&, n) has canonical form. Denote by Q,, Q; and Q, the distribution of (&, n), ¢
and n respectively. Let Py, _,(C; ») denote a regular conditional distribution of ¢
given n=y, where y€H, and CcZ#(H,), the Borel c-algebra of H,. If

Pyyey(C+EEI = y);¥) = P(C), CEB(H,), yEH,,

where the distribution P(.) does not depend on y, we shall say, that the conditional
distribution of £ given n depends on 5 only through the conditional expectation.

Lemma 7. If the above conditions are satisfied, then &—E(&|n) and n are inde-
pendent.

PROOF. Let CE#(H,), DA (Hy).
Qs e, n(CXD) = P([E—E(E|mIEC, neD)
= P(S€C+E(¢In), neD)

= [Pyy)(C+EEIn =1);y) Q,(dy)
D

= [ P(C)Q,(dy).
D

Hence the conditional distribution of £ —E(|n) given n=y does not depend on y,
that is £—E(¢|n) and n are independent.

3. Characterization theorems
Proposition 1. (See [5].) Let &,, &, ny, ns be Hilbert space valued r.v'.s. Let

L =6+ Apé+m
and
lo= A&+ Ea+n,.

Let E|{y|*<-co. Assume that A=A,y A, is invertible and the range of B=I—A
is closed. If

(i) & and (&4, ny, ny) are independent;
(") E(Cﬂ!éls Mis q2)=0,'
and

(ill) E(CSC;KD M1, ’h)-‘:Z,

where X is constant, then (A(,, Ay30;) is normally distributed and ({, A,2(s) and
(1, ns) are independent.

PROOF. Let {@)=A4128, and ney=n—Ayn,, then
fo = Ayals = AL+ (I—A) gy + AraN(e)-

T.
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From (ii) and (ii1) we obtain
©6) E(Co!C1_§(3)a Hiz)s m) =0,
(7 E(Co(&lﬁ_é(z)’ Nezys M) = A1 ZA1, = X

There exists a linear bounded operator B~ such that BB~ B=B. From (6) we then
find

E{(I—BB™)A{,+(I—BB™) Ayn(g)lne)} = 0.

By Lemma 2 (/—BB~) A0 Is degenerate.
We can assume that EA, 30 =0, E(J—A){y=0 and EA{;=0. It follows
that (I—BB_)Algﬂ(g)=0. Let ﬂ=§(2)+B_A12ﬂ{2), then

(I—A)p = (T—A) ¢+ A1
Hence {,=A{,+(I—A)u. Then (i), (6) and (7) give
(8) {, and (u, n) are independent;
©)) E(Lo|Cy—p, m)=0;
(10) E(o G —n,m=1,,
where n=(n,, n7s). The required result follows from Lemma 6.
Proposition 2. (See [6).) Let &, &y, ny, ns be Hilbert space valued r.v'.s. Let

L=&+Apk+m
and

{o = Anéi+&atn,.

If {y and (&5, ny, ns) are independent and (, and (¢y, ny, n3) are independent, then
(A (y, Ay2ly) is normally distributed and ({,, {s) and (n,, n,) are independent.

PROOF. Let T32=I—'A21A13 a.nd q='?2_A21’h- Then
&1 =0~ 4528
and

(11) {o= A {1+ Teués+n.

From the assumptions of the proposition Ay, {,+ Teés+n and ({,—A4,,&,, n) are
independent. Hence

(12) Q(Ant+An )Y (Toty— A Ag ty, i+ 1) =
= @(Aut) ¥ (Tt t)@(Ant) Y (— A;.ZA;‘I ta, l3),

where ¢ and Y denotes the characteristic functional of {; and (&, n) respectively.
Let @ and Y be the characteristic functional of ({,, 0, 0) and (82, n, 0) respectively.

Since ¢ and ¥ do not vanish in a neighborhood of the origin, we can take their
logarithm in this neighborhood. Then from (12) we have

S(B\0)+g(Byt) = f(Byt+g(Bs ) +f(Bs 1)+ g (Bg 1)
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in a neighborhood of 0, where t'=(1;, t2, t3), f(t)=log @(t), g(t)=log ¥(t) and

&L 0 Th —AGdl 0 Ay 00
B,=l0 0 o|, B=|1 0o 7|, B,=|0 00}/,
0 0 0 0 0 0 0 00
T4 00 0 4, 0 0 ~A4L 0
B,=|1 00|, B,=|0 0 o], B,=|0 0 I
0 00 000 el

It is easy to see that the conditions of Lemma 2.3 of [7] are satisfied. It follows
that f(B,t) is a polynomial in a neighborhood of r=0. Marcinkiewicz’s theorem
implies that A,, {, is normal. By similar arguments we get that 4,,{, has also a normal
distribution. By equation (11)

Ayl = Ay (Agy {) + Ao (Tos & +1).

Cramér’s theorem implies that A4,,(7y,&,+#) is normal. Therefore it follows that
(A, {y, Ay2ls) 18 normally distributed.
Finally Lemma 3 shows that ({;, {,) and (n,, n,) are independent.

Theorem 1. (See Theorem 2 of [5].) Let X, ..., X,,, U,, ..., U, be Hilbert space
valued random variables and let

i=1
where A;;=1;; (j=1,2,...,n). Suppose that the following conditions are satisfied:

(1) Z, and (X,, X3, ..., X,, U1, ..., U,) are independent;
(ii) E(ZJ|X1, Y. Xj—l} Xj+1| wany XI‘H UI? ceny U,,)=0 for j=2, 3, veey My
(Ii]) E(ZSZEIX]‘.’ XSs wany an Uls i Uu)=£1

where X is constant.
Let Ag=(4;1))1=1 be invertible i=1,2,..,n. Assume that Ay, Ay, and
I—T; (i=3, ...,n) are invertible, where T; (i=1, ..., n) are defined as in Lemma 4.
Then (Z,, ..., Z,) is normally distributed and (Z,, ..., Z,) and (U,, ..., U,) are
independent.

PROOF. According to the decomposition given in Lemma 4 we can write A=
:A{"): TS- Let

Ul Xl Z]_
U=|:1|, X=|:|, Z2=]|:|, W=S8SX+T",
U, X, Z,

j
then Z=TW. With these notations Z;= > T, W, and
k=1

2 JSRN R )
- a{"’l_slj u{[) weey u’_’f—l_sj—l.j Wh WIH,], very "{n U}s
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where ¢ denotes the generated g-algebra. Then (i), (i1) and (iii) give:

()’ Z, and (W,, ..., W,, U) are independent;
(11)’ E(ij’i_sljw}, s Wya =S80, W, Wi,y ooy Wy, U)=0 for

i=23,...,n;
(i) E(ZyZyW,—SuWa, Wy, ..., W, U)=L.

Now we can apply Proposition 1 with & =W, — Sy, W, &=W,, n,=0, n,=0.
It follows that ({;, {)=(Z,, Z;) has a normal distribution.
We proceed by induction. Assume that

(13) (Z,, ..., Z,_,) is normally distributed for 1</=j;
and

(14) (Z,,...2,_,) and (W,,...,W,, U) are independent for 1<I/=j, where
l<j=n. (It follows that W, ..., W, are independent normal r.v'.s. and (W, ...
s W;_y) and (W}, ..., W,, U) are independent. )

Let
C = (le? eey Tj,j—l)[T(j—l)]—l(zii trep Z}—l)’y

¢=W;, m=0, =Wy, .., W, U),
where T(;_,)=(Ty),{=]. Then from (13) and (14)
(15) { and (&, n,, n,) are independent;
(16) { is normally distributed;
and from (i1)
(17 EGIC-U=T)& mum) =0,
where {,=( +T,-,-6=é; TuW,=Z;. Then Lemma 5 gives that Z; is normally
distributed. Hence W, is normally distributed and W,, ..., W, are independent nor-

mal r.v".s, whence (Z,, ..., Z;) is normal. It follows from Lemma 5 that (Z,, ..., Z))
and (W, ,, ..., W,, U) are independent. This completes the proof.

Corollary 1. In Theorem 1, condition (iii) can be replaced by the following
condition:

“Z, and (X, X, ..., X,,, Uy, ..., U,) are independent”’.

Proor. By Proposition 2 (Z,, Z,) is normally distributed. Then one can proceed
as in the proof of Theorem 1.

Theorem 2. (See Note 5 of [5].) Let Xy, ..., X, be Hilbert space valued r.v'.s.
Assume that

(a) the regression of X; on the rest of the variables is linear, that is
E(Xt”(n s Xicts Xigns ooy Xp) =
=—[AuXi+... +4 1 X+ 4 X+ + 4, X)) (=1, ..., 0);
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(b) the conditional distribution of X, depends on the rest of the variables only
through the conditional expectation,
(c) D*(X,|X,, X5, ..., X,)=ZX, where X is constant.

Let A=(Ay); -1 with Ay=1I; (i=1,...,n). Suppose that A satisfies the con-
ditions given in Theorem 1.
Then (X,, ..., X,) is normal.

Proor. Let X'=(Xy,...,X,) and let Z=AX. (a) and (c) imply that the con-
ditions (ii) and (iii) of Theorem 1 are satisfied. Condition (i) of Theorem 1 follows
from (a) and (b) with the help of Lemma 7. Therefore X is normal.

Corollary 2. In Theorem 2, condition (c) can be replaced by the condition

(¢)" the conditional distribution of X, depends on the rest of the variables only
through its conditional expectation.

PRrROOF. It is an easy consequence of Corollary 1.
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