The neutrix distribution product x* ox*

By BRIAN FISHER (Leicester)

The ordinary summable function x% is defined for Ai>—1 by
x* for x>0,
Xt en
D for %=1,
The distribution x% is defined for —r—1<l<—r and r=1,2,... by

ra+1) a

— A+r

Y Ttr ) a2 T *

where I' denotes the gamma function.
The ordinary summable function x“ is defined for u=> —1 by

2% o x=<0,
xt =
< 0, - for x =0,
The distribution x* is defined for —r<u<—r and r=1,2, ... by

)Ty & .,
S T lairdl) dE

The following definition for the product fg of two distributions fand g was given

in [2].

Definition 1. Let f and g be two distributions for which on the open interval
(a, b), fis the r-th derivative of an ordinary summable function F in L?(a, b) and g”

1

is an ordinary summable function in L%(a, b) with %+—= 1. Then the product

fg=gf of f and g is defined on the interval (a, b) by

fe=gf= 2D FgON,
where
r!

The following theorem follows immediately from this definition.
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Theorem 1. The product x* x* exists and

xixt =0
for itp=—1.

Now let o be a fixed infinitely differentiable function having the properties

(1) o(x)=0, for |x|=1,
(i) o(x)=0,
(iii) a(lx)=9(—x).

(iv) f o(x)dx=1.
-1

Define the function J, by
0,(x) = ne(nx)

for n=1, 2, .... Itis obvious that {3,} is a sequence of infinitely differentiable func-
tions converging to the Dirac deltafunction é. For an arbitrary distribution f define
the function f, by

1/n
L@ =f+8,= [ flx—0)s,(1)dr
—1/n

for n=1, 2, .... Itis obvious that {f,} is a sequence of infinitely differentiable func-
tions converging to f.

The following definition was given in [3] and extends definition 1 so that a wider
class of distribution products could be defined, the resulting product not necessarily
being commutative.

Definition 2. Let f and g be arbitrary distributions and let
8n = g% 0,.

We say that the product fog of fand g exists and is equal to /# on the open interval
(a, b) if
lim (fg,, @) = lim (£, g,¢) = (h, 9)

for all test functions ¢ with compact support contained in the interval (a, b).
That definition 2 is an extension of definition 1 is shown by the following theo-
rem which was proved in [3].

Theorem 2. Let f and g be distributions. If the product fg exists on the open
interval (a, b) then the product fog and gof- exist and

fog=gof=/g
on this interval.

The next definition was given by VAN DER CORPUT, see [1].

Definition 3. A neutrix N is a commutative additive group of functions v(¢&)
defined on a domain N’ with values in an additive group N”, where further if for
some vin N, v(§)=y forall ¢ in N’, then y=0. The functions in N are called negli-
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gible functions. Now let N’ be a set contained in a topological space with a limit point
b which does not belong to N’. If f(£) is a function defined on N’ with values in N”
and it is possible to find a constant f such that (&) —p is negligible in N, then B is
called the neutrix limit or N-limit of fas ¢ tends to b and we write

N—lim /) = .

where the limit # must be unique if it exists.
The following definition was given in [4].

Definition 4. Let f and g be arbitrary distributions and let
8 = §*0p.

We say that the neutrix product fog of f and g exists and is equal to / on the open

interval (a, b) if
N—lim (fg,, ¢) = N=lim (£, 8,9) = (h, )

for all test functions ¢ with compact support contained in the interval (a, b), where N
is the neutrix having domain N’={l, 2, ...,n, ...} and range N” the real numbers
with negligible functions linear sums of the functions

n*In"~1n, In"n
for A=0 and r=1,2, ... and all functions f(n) for which lim f(n)=0.
The following theorems were given in [4].

Theorem 3. Let f and g be distributions for which the product fog exists by
definition 2. Then the neutrix product fog exists and defines the same distribution.

Theorem 4. Let f and g be distributions and suppose that the neutrix products fog
and fog’ exist on the open interval (a, b). Then the neutrix product f’og exists on

the interval (a, b) and
(fog) =fog+fog
on the interval (a, b).

Theorem 5. The neutrix products x% ox-*~" and x-*~Tox% exist and

S il n cosec (n)
Xi ox_," = x_,j' oxi = —w
for A0, %1, +2. ... and r=1,2, ...

We now prove the following theorem.

o 1(x)

Theorem 6. The neutrix products x4 ox* and x* ox% exist and

(1) hoaxh =32 okt =1
for A+p=—1, —2,....

ProOF. We first of all note that if A4u= —1 then equations (1) follow from
theorems 1, 2, and 3.
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Now suppose that A>—1 and —k<pu< —k+1, where k is a positive integer.
Then

_ T(p+1) !

T T'(p+k) dx*-1!

x“*+¥=1 being an ordinary summable function and so

xp+k 1

1/n
(o) =2t 08, = TEE [ @aptitag-o e

F( T(u+k)
Thus
rp+k) g
m_{ x‘l(x’l),,x"'dx=

1/n 1/n
= [ 2 [ (e—xp+r-258-D(t) dedx

0 -
Ln t
= f 6},"*”(:)fx"“'(r—x)“**“dxdr

1/n

e f phrutmek gk ”(l‘)fv""""(l—v)““ 1 dp dt

1/n
= BA+m+1, p+k) [ prurmiksk=n(s) dr,
0

where the substitution x=rv has been made and B denotes the beta function.
Making the substitution nf=s we have

1/n 1
f t1+y+n+15:x-n(,) dt = n=A—#-m-1 f Si+n+m+k9(t—l)(s) ds
0 0

and it follows that the functions

fxi(x'i),,x"‘dx

are negligible, or zero, for m=0, 1,2, ... and A+u —1, —2, .... Further, choosing
a positive integer p> —A—pu—1, we see that

lim [ x4 (x%),x"dx = 0

Now let ¢ be an arbitrary test function. Then

@ o) = 3 om0+ ¢ ()

m=0
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where 0=¢=1 and so

(s o) = 3O [t e et [ ()00 0 d
Since - g

| [ 2 ), 2700 Ex) d| = sup (9P Cl) - [ [k (x8)y] dx

it follows from what we have just proved that

N—"l_l-lg (xi » (xji)n(l’(x)) = 0 = (0, (P)'
Thus
(3) xioxt =0
when A>-—1 and u, A+u=-1, -2,....

Now assume that equation (3) holds when —k<Ai<-—k+1 and pu, A+u#
#—1, —2, ..., where k is a positive integer. It follows from theorem 4 that

(x3oxt) = 0= Ax}"toxt —uxioxt™y,
provided that x>0 and it follows from our assumption that
4) xA-lox® =0

when —k<i<—k+1 and pu—1, A+pu=—1, =2, .... To deal with the particular
case u=0 we notice that the derivative of x° is —d(x). Now it is easily proved that

x20d(x) =0

for 20, —1, —2, ... and this result was in fact given in [5]. It follows from theorem

4 that
GioxlY =0=4xi"tox? —x%0d(x)

and equation (4) follows from our assumption when —k<i<—k+1 and p=0.
This establishes equation (3) by induction when A, p, A4+pu=—1, =2, ....

We will now consider the neutrix product x4 ox=" for A, A—r#—1, =2, ...
and r=1,2,.... By definition

r

_— e - ! i
dx,lnx_ (r—1!xz,

In x_ being an ordinary summable function and so

1 1/n

o=/ D@

x

(x:r)n — x:r*‘su —
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Thus if i>—1
oo 1/n 1/n
—(r—1! f 2O L dx = f x“"‘f In(r—x)é{"(r)dtdx
— o0 0 x

1/n

= f 30 (1) f x*+m |n (1—x) dx dt

1/n

= f t“""“é"’(!)fv“"‘[ln(l—v)+ln f)dvdt

1/n

—{ f v““""ln(l—v)dv}{ f AHm15O () dt} + ——— f tAHm+1n 1500 (1) dt,

A+m +l

where the substitution x=rv has been made.
Making the substitution nr=s we see that the functions

f 2N dx

are negligible, or zero, for n=0, 1,2, ... and A—r# —1, —2, .... Further, choosing
a positive integer p>r—A—1, we see that

lim [ |x} (x27),x?|dx = 0.

Now let ¢ be an arbitrary test function. Then equation (2) holds and it follows

that

N-lim (x}, (x2),0(x)) = 0= (0, ¢).
Thus
) xtoxZ' =0

when A>—1, A—r#—1,—-2,... and r=1,2,....
We will now assume that equation (5) holds when —k<l<—k+1 and r=
=1, 2, ..., where k is a positive integer. It follows from theorem 4 that

(oY =0=01%ox"+rasox=""2
and it follows from our assumption that
Xi*lax=r =0

when —k<i<-—k+1 and r=1, 2, .... This establishes equation (5) by induction
for A, A—r#—-1, —2,... and r=1,2, ...;

We will now consider the neutrix product In x ox% for u=-—1, =2,.... It
follows from theorems 1, 2 and 3 that this product exists and

(6) Inx,ox* =0
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for u=—1. Let us therefore suppose that —k<=pu<—k+1, where k is a positive
integer. Then

F(,u+k) -y Un 1/n

PR Y = — yWtk=15(k—1)

F(ut1) _:[ In x, (x*),x"dx uf .f"lnx;f (t—x %=1 (f)dt dx
1/n t

= [ &9 [ »*@—xp+-Inxdxdt
0 0

1n 1

= f prmek k() [ om(1—o)*+*=1(In t+Inv) dvdt
0 0

1/n

= B(m+1,p+k) [ ¢+ n 6=V (1) dr+
0

-{-{fv"(l—v)“"“lnvdv}{f. e tEst-D (0 di}
0 0

where the substitution x=rv has been made.
Making the substitution nt=s we see that the functions

f Inx, (x%),x" dx
are negligible, or zero, for m=0, 1,2, .... Further, choosing a positive integer

p=—u—1, we see that

lim [ [lnx, (x%),x"| dx = 0.

n—eoc
- o0

Now let ¢ be an arbitrary test function. Then equation (2) holds and it follows
that
N-lim (Inx., (x2),¢(x)) = 0= (0, 9),

when —k<p<—k+1. This establishes equation (6) for u=—1, -2, ....
It now follows from theorem 4 that

(Inx,ox*) =0=x7'ox* —ulnx,ox*"?

= x37lox"
for u#0, —1, —2,.... Let us therefore assume that the neutrix product x3"ox“
exists and
(7 x3Toxt =0
for some positive integer r and u, u—r# —1, —2, .... Then by theorem 4
(x3Toxt) =0 =—rx;""loxt —ux;’ox*"1

= —pxsr"loxt
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from our assumption. This establishes equation (7) by induction for u, u—rs=
#—1, =2, ....
We have therefore proved the neutrix product x% ox” exists and

xioxt =0
for i+pu=—1,—2,.... Byreplacing x by —x in this equation we see that the neutrix
product x* ox® exists and

xtoxt =0
for A+u#—1, =2, .... This completes the proof of the theorem.

We can now define further neutrix products of distributions. For example let
1

sin xf be the ordinary summable function defined by
.L htad ._.l
sinx? = ,.‘;;";x* 2/2m—-1)L.

Then for a non-negative integer r the function

T
2 x, */2m-1)!
m=r+1
is r times continuously differentiable and it follows from definition 1 and theorem 2
that

e 1
2

oo _l _'_l _r_—l- - m

{ 2 x, */@m- l)!}ox_ S=x 18 o{ 2 x, */2m— 1)1} = 0.
m=r+1 m=r+1

Since the neutrix product is obviously distributive with respect to addition we see that

B i P it ) aepck. e sl P
sinx?ox_ *= ;;(x+ ox 2)/(2m—1)!+{ b M 3/(2m-—1)!}ox_ ' =

m=r+1
s ¢ (_ l)mn (r—m =8 —r—% § %
v mg; 2("—"1)!(2!?1—-1)!5 (x)=x_ ®osinx},
where theorems 5 and 6 have been used, for r=1,2,... and

LI 1 A -
1 2 - — 2 1 2 =
sinxox_2? =x_%osinx? =0.
. 3 L
Now define the function x.*cosx} by

1 1 1 PPN §
x, *cosx? =2(sinx?) = mé'] x, /(2m)!.
Then it can be proved similarly that
1 1 . PP 1 1 5 (—1)"x

Tl 3 e Sl i ] 2) =
(», %cosx¥)ox_ x_ *o(x, ?cosx}) ...‘:?1; 2(r—m)! (2m)!
for r=0,1,2,....

=" (x)
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The Bessel function J,(x), see for exampie SNEDDON [6], is defined by
1 v42m

. (5]
i) ,50 m!IT'(m+v+1)

for v=—1, =2, .... We will define the distribution J,(x,) by

lv+2m

oo, 1, v+42m
2 2= > XY

helE = ..é.; m! T (m+v+1)

for v#—1, =2, ..., where the x*, for v-= —1 are interpretted in the distributional
sense. It follows as above that

]

L e s xT ol (x ) =
1 v+2m
k (_ l)m E

1
= —-2-ncosec{v3t)m.§) m!(r—2m—1)!T (m+v+1)

5(r-—2ll—l)(x)'

where
-:.12-(;-—1), ok
k =

—;—(r—Z) r even

for r=1,2,... and vst0, £1, £2, ....
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