Syntopogenous g-families and their applications in extension theory

By KÁLMÁN MATOLCSY (Debrecen)

0. Introduction

In [8] the following generalization of the notion of an Hacque's E-mapping

([5]-[6]) was introduced:

For a given single valued mapping $g: E \rightarrow E'$, a mapping 3 of $2^{E'}$ into the set of all systems of subsets of E is called a g-mapping iff it satisfies the following conditions for any $A', B' \subset E'$ and $X, Y \subset E$:

(M0) $\mathfrak{Z}(A') \neq \emptyset$, and $Y \supset X \in \mathfrak{Z}(A')$ implies $Y \in \mathfrak{Z}(A')$.

(M1) $\emptyset \in \mathfrak{z}(A')$ iff $A' = \emptyset$.

(M2) $X \in \mathfrak{Z}(A')$ implies $g^{-1}(A') \subset X$.

(M3) $A' \subset B'$ implies $\mathfrak{Z}(B') \subset \mathfrak{Z}(A')$.

If $\mathfrak{z}_1, \mathfrak{z}_2$ are two g-mappings then $\mathfrak{z}_1 \subset \mathfrak{z}_2$ (\mathfrak{z}_1 is coarser than \mathfrak{z}_2 , or \mathfrak{z}_2 is finer than \mathfrak{z}_1) means $\mathfrak{z}_1(A') \subset \mathfrak{z}_2(A')$ for any $A' \subset E'$. A g-mapping \mathfrak{z}_1 is said to be topogenous iff $X \in \mathfrak{z}(A')$ and $Y \in \mathfrak{z}(B')$ imply $X \cap Y \in \mathfrak{z}(A' \cap B')$ and $X \cup Y \in \mathfrak{z}(A' \cup B')$. \mathfrak{z}_1 is called perfect iff $X_i \in \mathfrak{z}(A_i')$ ($i \in I$) implies $\bigcup_{i \in I} X_i \in \mathfrak{z}(\bigcup_{i \in I} A_i')$. It is known that \mathfrak{z}_1 is a perfect topogenous g-mapping iff, for every $X' \in E'$, there exists a filter $\mathfrak{z}(X')$ in E such that $x \in E$, $X \in \mathfrak{z}(g(x))$ imply $x \in X$, $\mathfrak{z}(\emptyset) = 2^E$, and $\mathfrak{z}(A') = \bigcap_{x' \in A'} \mathfrak{z}(x')$ for any $\emptyset \neq A' \subset E'$.

If <' is a semi-topogenous order ([1]) on E', and $x \in E'$, $x <' V' \subset E'$ imply $g(E) \cap V' \neq \emptyset$, then a g-mapping $\mathfrak{Z}_{<'}$ can be defined by

$$\mathfrak{Z}_{<'}(A') = \{X \subset E: A' <' E' - g(E - X)\}.$$

As an extension of a result of S. GACSÁLYI ([4], prop. 1), the following duality theorem was proved ([8], (2.4)): the correspondence $<'\rightarrow_{3<'}$ is surjective iff g is injective, and $<'\rightarrow_{3<'}$ is injective iff g is surjective. Consequently $<'\rightarrow_{3<'}$ is one-to-one iff so is g. The proof of this theorem required the construction of two semi-topogenous orders: If g is a g-mapping then the definitions

$$A' <_{\dagger \mathfrak{z}} B' \Leftrightarrow A' \subset B' \quad \text{and} \quad g^{-1}(B') \in \mathfrak{z}(A'),$$

and

$$A <_{\natural_3} B \Leftrightarrow B \in \mathfrak{z} \big(g(A) \big)$$

yield semi-topogenous orders $<_{t_3}$ and $<_{t_3}$ on E' and E respectively.

In the present paper the notion of a syntopogenous g-family 3 will be introduced, which consists of topogenous g-mappings with special properties. If g(E) is dense

in the syntopogenous space $[E', \mathcal{S}']$ ([1]), then $3_{\mathcal{S}'} = \{3_{<'}: <' \in \mathcal{S}'\}$ is a syntopogenous g-family. Conversely, if 3 is a given syntopogenous g-family then $\mathcal{S}_{13} = \{<_{13}: 3 \in 3\}$ and $\mathcal{S}_{43} = \{<_{43}: 3 \in 3\}$ are syntopogenous structures on E' and E respectively. We shall study the correspondence $\mathcal{S}' \to 3_{\mathcal{S}}$. In Chapter 3 some connections between the extensions of syntopogenous structures and the syntopogenous g-families will be examined. E.g. a class of the extensions of a syntopogenous structure \mathcal{S} will be given, in which the extension $h(\mathcal{S})$ (see [7]; [3], th. 3.1) is the coarsest one, and this is a generalizations of a remarkable property of the topological strict extensions ([2], (6.1.2)).

1. Syntopogenous g-families

This chapter will deal with various kinds of families of g-mappings, therefore first of all we need to mention the following lemmas:

(1.1) **Lemma.** If $\{\mathfrak{z}_i\colon i\in I\neq\emptyset\}$ is a family of g-mappings then there exists a g-mapping \mathfrak{z}_i , which is the coarsest of all g-mappings finer than every \mathfrak{z}_i ($i\in I$). \mathfrak{z}_i can be defined by $\mathfrak{z}_i(A')=\bigcup_{i\in I}\mathfrak{z}_i(A')$ for $A'\subset E'$. \mathfrak{z}_i will be denoted by $\bigcup_{i\in I}\mathfrak{z}_i$.

(1.2) Lemma.

- (1.2.1) If $<_1'$ and $<_2'$ are semi-topogenous orders on E', g(E) is $<_2'$ -dense ([8], ch. 2) and $<_1' \subset <_2'$, then g(E) is also $<_1'$ -dense, and $\mathfrak{Z}_{<_1'} \subset \mathfrak{Z}_{<_2'}$.
- (1.2.2) If \mathfrak{z}_1 and \mathfrak{z}_2 are g-mappings and $\mathfrak{z}_1 \subset \mathfrak{z}_2$, then $<_{\mathfrak{z}_3} \subset <_{\mathfrak{z}_3}$ and $<_{\mathfrak{z}_3} \subset <_{\mathfrak{z}_3}$
- (1.3) Proposition. Let 3 be a g-mapping. We have a g-mapping denoted by 3², for which
- (1.3.1) $X \in \mathfrak{z}^2(A')$ iff there exists $Y \in \mathfrak{z}(A')$ such that $X \in \mathfrak{z}(g(Y))$. \mathfrak{z}^2 is coarser than \mathfrak{z} , and it has the properties listed below:
- (1.3.2) If <' is a semi-topogenous order on E', and g(E) is <'-dense, then $\mathfrak{F}^2_{<'}\subset\mathfrak{F}^2_{<'}$.
- (1.3.3) If g is injective and \mathfrak{z} is topogenous, then $<_{\mathfrak{z}^2} \subset <_{\mathfrak{z}^3}^2$.
- $(1.3.4) <_{\downarrow_3^2} \subset <_{\downarrow_3}^2 always holds.$

PROOF. $\mathfrak{z}^2(A') \subset \mathfrak{z}(A')$ is true, because $X \in \mathfrak{z}^2(A')$ implies the existence of a set $Y \in \mathfrak{z}(A')$ such that $X \in \mathfrak{z}(g(Y))$, and by (M2) $X \supset g^{-1}(g(Y)) \supset Y \in \mathfrak{z}(A')$, thus in view of (M0) $X \in \mathfrak{z}(A')$. \mathfrak{z}^2 is a g-mapping. (M0): $E \in \mathfrak{z}^2(A')$, since $E \in \mathfrak{z}(A')$ and $E \in \mathfrak{z}(g(E))$. If $Y \supset X \in \mathfrak{z}^2(A')$ then for a suitable $Y_0 \in \mathfrak{z}(A')$ we have $Y \supset X \in \mathfrak{z}(g(Y_0))$, therefore $Y \in \mathfrak{z}^2(A')$. (M1): $\emptyset \in \mathfrak{z}(\emptyset)$ and $\emptyset \in \mathfrak{z}(g(\emptyset))$, thus $\emptyset \in \mathfrak{z}^2(\emptyset)$. Conversely, if $\emptyset \in \mathfrak{z}^2(A')$, and $Y \in \mathfrak{z}(A')$ such that $\emptyset \in \mathfrak{z}(g(Y))$, then by (M2) $Y \subset g^{-1}(g(Y)) \subset \emptyset$, thus $Y = \emptyset$. Consequently because of property (M1) of \mathfrak{z} we get $A' = \emptyset$. (M2): If $X \in \mathfrak{z}^2(A')$ and $Y \in \mathfrak{z}(A')$ such that $X \in \mathfrak{z}(g(Y))$, then $g^{-1}(A') \subset Y \subset g^{-1}(g(Y)) \subset X$. (M3): If $X \in \mathfrak{z}^2(B')$ and $A' \subset B'$, then from $Y \in \mathfrak{z}(B') \subset \mathfrak{z}(A')$ and $X \in \mathfrak{z}(g(Y))$ the relation $X \in \mathfrak{z}^2(A')$ follows.

(1.3.2): Suppose $X \in \mathfrak{z}_{<'2}(A')$. Then A' <' C <' E' - g(E - X), but this implies $g^{-1}(C') \in \mathfrak{z}_{<'}(A')$, and in view of $g(g^{-1}(C')) \subset C'$, we have $X \in \mathfrak{z}_{<'}(g(g^{-1}(C')))$, that is $X \in \mathfrak{z}_{<'}^2(A')$.

(1.3.3): Let us assume that g is injective and \mathfrak{F} is topogenous. Then $A' <_{\mathfrak{F}^2} B'$ implies $A' \subset B'$ and $g^{-1}(B') \in \mathfrak{F}^2(A')$. This means that there exists a set $Y \in \mathfrak{F}(A')$ such that $g^{-1}(B') \in \mathfrak{F}(g(Y))$. Putting $C' = A' \cup g(Y)$, we get $A' \subset C'$ and $g^{-1}(C') = Y \in \mathfrak{F}(A')$, since $g^{-1}(A') \subset Y$. Similarly $Y = g^{-1}(g(Y)) \subset g^{-1}(B')$ gives that $g(Y) \subset g(g^{-1}(B')) \subset B'$ and $g^{-1}(B') \in \mathfrak{F}(A') \subset g(Y) = \mathfrak{F}(A') \subset g(Y) = \mathfrak{F}(A')$ follows, so that $A' <_{\mathfrak{F}^1} C' <_{\mathfrak{F}^1} B'$.

(1.3.4): If $A <_{13^2} B$ then $B \in \mathfrak{F}^2(g(A))$, thus there exists a set $Y \in \mathfrak{F}(g(A))$ such that $B \in \mathfrak{F}(g(Y))$. This is equivalent to $A <_{13} Y <_{14} B$.

A family \Im of topogenous g-mappings will be called a syntopogenous g-family, if the following conditions are fulfilled:

(F1) For any $\mathfrak{z}_1, \mathfrak{z}_2 \in \mathfrak{Z}$ there exists $\mathfrak{z} \in \mathfrak{Z}$ such that $\mathfrak{z}_1 \cup \mathfrak{z}_2 \subset \mathfrak{Z}$.

(F2) If $3 \in 3$ then there is $3_1 \in 3$ with $3 \subseteq 3_1^2$.

If 3_1 and 3_2 are syntopogenous g-families, then we shall say that 3_1 is coarser than 3_2 , or equivalently 3_2 is finer than 3_1 , iff for any $3_1 \in 3_1$ there exists $3_2 \in 3_2$ such that $3_1 \subset 3_2$. This fact will be denoted by $3_1 < 3_2$. We shall write $3_1 \sim 3_2$ iff $3_1 < 3_2$ and $3_2 < 3_1$. Such families will be said to be equivalent.

A syntopogenous g-family is topogenous, if it consists of a single topogenous g-mapping.

(1.4) Proposition. If \Im is a syntopogenous g-family then a topogenous g-family \Im^t can be defined as follows:

(1.4.1)
$$3^t = \{3_0\}$$
, where $3_0 = \mathbf{U}\{3: 3 \in 3\}$.

 3^t is the coarset of all topogenous g-families finer than 3.

PROOF. Let us prove that \mathfrak{z}_0 is topogenous. Suppose $X \in \mathfrak{z}_0(A')$ and $Y \in \mathfrak{z}_0(B')$. Then $X \in \mathfrak{z}_1(A')$ and $Y \in \mathfrak{z}_2(B')$ for some $\mathfrak{z}_1, \mathfrak{z}_2 \in \mathfrak{Z}$. If $\mathfrak{z}_1 \cup \mathfrak{z}_2 \subset \mathfrak{z} \in \mathfrak{Z}$, then from the topogenity of \mathfrak{z} we can deduce $X \cap Y \in \mathfrak{z}(A' \cap B') \subset \mathfrak{z}_0(A' \cap B')$ and $X \cup Y \in \mathfrak{z}(A' \cup B') \subset \mathfrak{z}_0(A' \cup B')$. (F1) is obviously satisfied by \mathfrak{Z}^t . Finally put $X \in \mathfrak{z}_0(A')$. Then $X \in \mathfrak{z}_0(A')$ for a suitable $\mathfrak{z} \in \mathfrak{Z}$. By (F2) $X \in \mathfrak{z}_1^2(A')$ for some $\mathfrak{z}_1 \in \mathfrak{Z}$, and from this $X \in \mathfrak{z}_0^2(A')$ follows, hence (F2) is also fulfilled. Clearly $\mathfrak{Z} \subset \mathfrak{Z}_1$. Let \mathfrak{Z}_1 be a topogenous \mathfrak{z} -family finer than \mathfrak{Z} . Then, for $\mathfrak{Z}_1 = \mathfrak{z}_1$, we have $\mathfrak{Z} \subset \mathfrak{Z}_1$ for every $\mathfrak{Z} \in \mathfrak{Z}$, therefore $\mathfrak{Z}_0 \subset \mathfrak{Z}_1$ and $\mathfrak{Z}^t \subset \mathfrak{Z}_1$.

A syntopogenous g-family will be said to be perfect if its elements are perfect topogenous g-mappings.

(1.5) Proposition. Let 3 be a syntopogenous g-family. Then the definition

$$(1.5.1) 3p = {3p: 3 \in 3},$$

where

(1.5.2)
$$\mathfrak{z}^p(\emptyset) = 2^E$$
 and $\mathfrak{z}^p(A') = \bigcap_{x' \in A'} \mathfrak{z}(x')$ for $\emptyset \neq A' \subset E'$,

yields a perfect syntopogenous g-family which is the coarsest of all perfect syntopogenous g-families finer than \Im . If \Im is topogenous then so is \Im^p , too.

PROOF. If \mathfrak{z} is a topogenous g-mapping then \mathfrak{z}^p is a perfect topogenous g-mapping by [8], (1.5). If $\mathfrak{z}_1, \mathfrak{z}_2 \in \mathfrak{Z}$ then $\mathfrak{z}_1 \cup \mathfrak{z}_2 \in \mathfrak{Z}$ implies $\mathfrak{z}_1^p \cup \mathfrak{z}_2^p \subset \mathfrak{z}_2^p$. If $\mathfrak{z} \in \mathfrak{Z}$ and $\mathfrak{z}_1 \in \mathfrak{Z}$ such that $\mathfrak{z} \subset \mathfrak{z}_1^2$, then $\mathfrak{z}^p \subset \mathfrak{z}_1^{p^2}$. In fact, suppose $X \in \mathfrak{z}^p(A')$, $A' \neq \emptyset$. Then, for any $x' \in A'$, there is a set $Y_{x'} \in \mathfrak{z}_1(x')$ such that $X \in \mathfrak{z}_1(g(Y_{x'}))$. It is easy to show $Y = \bigcup_{x' \in A'} Y_{x'} \in \mathfrak{z}_1^p(A')$, and $X \in \mathfrak{z}_1^p (\bigcup_{x' \in A'} g(Y_{x'})) = \mathfrak{z}_1^p (g(Y))$, that is $X \in \mathfrak{z}_1^{p^2}(A')$. If $A' = \emptyset$

then $X \in \mathfrak{F}^{p^2}(A')$ is trivial by (M1) and (M0). From [8], (1.5) \mathfrak{F}^p follows, and similarly, if $\mathfrak{F}^p = \mathfrak{F}^p$ for a perfect syntopogenous g-family \mathfrak{F}^p , then $\mathfrak{F}^p = \mathfrak{F}^p$. If \mathfrak{F}^p is topogenous then \mathfrak{F}^p consists of a single g-mapping, too.

(1.6) Corollary. If 3 is a syntopogenous g-family then 3^{tp} is the coarsest of all perfect topogenous g-families finer than 3. ■

2. Syntopogenous g-families and syntopogenous structures

Let us consider a syntopogenous structure \mathscr{G}' on E' such that g(E) is \mathscr{G}' -dense (that is g(E) is <'-dense for every $<' \in \mathscr{G}'$). Then a family of topogenous g-mappings is obtained by

(2.1)
$$\mathfrak{Z}_{\mathscr{S}'} = \{\mathfrak{Z}_{<'}: <' \in \mathscr{S}'\}$$
 (cf. [8], (2.3.1)).

(2.2) Proposition. If \mathcal{G}' is a syntopogenous structure on E' such that g(E) is \mathcal{G}' -dense, then \mathfrak{F}' is a syntopogenous g-family having the following properties:

$$\mathfrak{Z}_{g'}^t = \mathfrak{Z}_{g't}.$$

$$(2.2.2) 3^{p}_{e'} = 3_{e'p}.$$

$$(2.2.3) 3^{tp} = 3_{grtp}.$$

(2.2.4) If \mathcal{S}' is topogenous or perfect, then $\mathfrak{Z}_{\mathcal{S}'}$ also has the corresponding property.

PROOF. If $<_1'$, $<_2' \in \mathscr{S}'$ and $<_1' \cup <_2' \subset <' \mathscr{S}'$, then from (1.2.1) $\mathfrak{z}_{<_1'} \cup \mathfrak{U} = \mathfrak{z}_{<_2'} \subset \mathfrak{z}_{<_1'}$, then in view of (1.3.2) we have $\mathfrak{z}_{<_1'} \subset \mathfrak{z}_{<_1'}^{2} \subset \mathfrak{z}_{<_1'}^{2}$, thus $\mathfrak{Z}_{\mathscr{S}'}$ is a syntopogenous g-family. The properties (2.2.1)—(2.2.3) are obvious (see [8], (2.3.2)), and because of (1.4)—(1.5) the statement (2.2.4) is their direct consequence.

Further we shall study the correspondence $\mathscr{G}' \to \mathscr{Z}_{\mathscr{G}'}$.

(2.3) **Theorem.** Let g be an injection, and g be a syntopogenous g-family. Then

$$\mathscr{S}_{\mathfrak{f}\mathfrak{J}} = \{ <_{\mathfrak{f}\mathfrak{J}} : \mathfrak{J} \in \mathfrak{J} \}$$

is a syntopogenous structure on E', g(E) is \mathcal{L}_{13} -dense, and $3=3_{\mathcal{L}_{13}}$. \mathcal{L}_{13} is the finest of all syntopogenous structures \mathcal{L}' on E', for which g(E) is \mathcal{L}' -dense and $3_{\mathcal{L}'} < 3$.

PROOF. By [8], (2.8.1) and statements (1.2.2), (1.3.3) of the present paper \mathcal{S}_{t3} is in fact a syntopogenous structure on E', and g(E) is \mathcal{S}_{t3} -dense (see [8], (2.7)). From [8], (2.7) $3 = 3_{\mathcal{S}_{t3}}$ follows. Let us suppose that \mathcal{S}' is a syntopogenous structure on E', g(E) is \mathcal{S}' -dense, and $3_{\mathcal{S}'} < 3$. Then, for $<' \in \mathcal{S}'$, there is $3 \in 3$ such that $3_{<'} \subset 3$, and because of [8], (2.7) we have $<' \subset <_{t3}$, so that $\mathcal{S}' < \mathcal{S}_{t3}$.

(2.4) Proposition. If g is an injection then the syntopogenous structure \mathcal{L}_{13} has the following properties for any syntopogenous g-family \mathfrak{Z} :

$$(2.4.1) \mathscr{S}_{\dagger 3}^{t} = \mathscr{S}_{\dagger 3^{t}}.$$

$$(2.4.2) \mathscr{S}^p_{\dagger 3} = \mathscr{S}_{\dagger 3^p}.$$

$$\mathcal{S}_{\dagger 3}^{tp} = \mathcal{S}_{\dagger 3^{tp}}.$$

If 3 is topogenous or perfect, then \mathcal{G}_{13} is of this kind, too.

PROOF. It can be put together from (1.4), (1.5), and [8], (2.8).

(2.5) Proposition. Let \Im be an arbitrary syntopogenous g-family. Then we have a syntopogenous structure \mathscr{L}_{13} on E determined as follows:

$$(2.4.1) \mathcal{S}_{43} = \{<_{43} : 3 \in 3\}.$$

The syntopogenous structure \mathcal{L}_{13} has the following properties:

$$\mathcal{G}_{i3}^{t} = \mathcal{G}_{i3^{t}}.$$

$$\mathcal{G}_{43}^p = \mathcal{G}_{43^p}.$$

$$\mathcal{S}_{13}^{tp} = \mathcal{S}_{13}^{tp}.$$

If 3 is topogenous or perfect, then so is \mathcal{L}_{13} , too.

PROOF. (1.2.2), (1.3.4), [8], (2.11.1) give that \mathcal{L}_{43} is a syntopogenous structure on E. The properties listed in (2.5.2)—(2.5.4) can be deduced from (1.4), (1.5) and [8], (2.11.2).

(2.6) Theorem. Let \mathscr{S}' be a syntopogenous structure on E', and g(E) be \mathscr{S}' -dense. Then $\mathscr{S}_{43g}=g^{-1}(\mathscr{S}')$ holds.

PROOF. See [8], (2.10).

(2.7) Theorem. Suppose that g is a surjection, and 3 is a syntopogenous g-family. Then the mapping g is compatible with the syntopogenous structure \mathcal{L}_3 , and $\mathcal{L}'=g(\mathcal{L}_4)$ is the unique syntopogenous structure on E' (up to equivalence) such that $3\sim 3_{\mathcal{L}'}$.

PROOF. If $A <_{i_3} B$ for a mapping $\mathfrak{z} \in \mathfrak{Z}$, then $B \in \mathfrak{z}(g(A))$, and from (M2) we deduce $g^{-1}(g(A)) \subset B$, therefore g is compatible with \mathscr{L}_{i_3} (see [1], p. 106). This gives that the syntopogenous structure $\mathscr{L}' = g(\mathscr{L}_{i_3})$ on E' is defined. We show that $\mathfrak{Z}_{\mathscr{L}'} \sim \mathfrak{Z}$. In fact, suppose $\mathfrak{z} \in \mathfrak{Z}$ and $\mathfrak{L}' = g(\mathscr{L}_{i_3})$. In this case $X \in \mathfrak{Z}_{\mathfrak{L}'}(A')$ implies A' <'B' and $g^{-1}(B') \subset X$ for some set $B' \subset E'$ (see [8], (2.2)). This means

that $g^{-1}(A') <_{\xi_3} g^{-1}(B') \subset X$, thus by $A' = g(g^{-1}(A'))$ from the definition of $<_{\xi_3}$ we get $X \in \mathfrak{F}_3(A')$, so that $\mathfrak{F}_{<'} \subset \mathfrak{F}_3$. Conversely, let \mathfrak{F}_3 be an element of \mathfrak{F}_3 , further \mathfrak{F}_3 , \mathfrak{F}_3 such that $\mathfrak{F}_3 \subset \mathfrak{F}_3$, \mathfrak{F}_3 , \mathfrak{F}_3 , and put $s' = g(s_{\xi_3})$. If $X \in \mathfrak{F}_3(A')$ then there exists $Y \in \mathfrak{F}_3(A')$ for which $X \in \mathfrak{F}_3$ (g(Y)), and there is a set $X \in \mathfrak{F}_3$ (g(Y)) such that $Y \in \mathfrak{F}_3$ (g(X)). $g^{-1}(A') \subset Z <_{\xi_3} Y \subset g^{-1}(g(Y))$, thus $g' = g(X) \subset g^{-1}(g(Y)) \subset X$, consequently $g' \in g^{-1}(A')$. We got $g' \in g^{-1}(A')$ is another syntopogenous structure on $g' \in g^{-1}(A')$ such that $g' \in g' \subset g^{-1}(A')$. We can deduce $g' \in g' \subset g' \subset g'$, and by $g' \in g' \subset g' \subset g'$.

The results mentioned above can be summarized as follows:

- (2.8) Theorem. If we do not distinguish equivalent syntopogenous structures and g-families respectively from each other, then
- (2.8.1) if g is injective, then $\mathscr{S}' \to \mathfrak{Z}_{\mathscr{S}'}$ is surjective.
- (2.8.2) If g is surjective, then $\mathscr{S}' \to 3_{\mathscr{S}'}$ is one-to-one.
- (2.8.3) If $\mathscr{S}' \to \mathscr{J}_{\mathscr{S}'}$ is injective and E' has at least two elements, then g is surjective.

PROOF. (2.8.1) follows from (2.3). (2.8.2) is a consequence of (2.7). Finally (2.8.3) can be deduced from [8], (2.13), because with the notations of this example $\{<_1'\}$ and $\{<_2'\}$ are perfect topogenous structures on E'.

Let us note that from the perfect topogenous g-mapping 3 of examples [8], (2.5.1), (2.5.2) we cannot make a perfect topogenous g-family $\{3\}$, since $3 \subset 3^2$ does not hold, consequently in such a direction the converse of (2.8.1) cannot be proved. But in general, we should vainly look for a perfect topogenous g-family, which cannot be deduced from some topology on E'; it will be shown that such a family does not exist (see (2.10)).

In the following statement we shall use the notion of a *round filter*, the definition of which can be found e.g. in [7] or [3].

- **(2.9) Theorem** $\mathfrak{Z} = \{\mathfrak{z}\}$ is a perfect topogenous g-family iff a topology \mathscr{T} on E, and for any $x' \in E'$, a filter $\mathfrak{f}(x')$ in E can be chosen such that
- (2.9.1) f(x') is T-round for any $x' \in E'$, in particular f(g(x)) is the T-neighbourhood filter of the point $x \in E$, and

(2.9.10)
$$\mathfrak{z}(\emptyset) = 2^E, \quad \mathfrak{z}(A') = \bigcap_{x' \in A'} \mathfrak{f}(x') \quad \text{for} \quad \emptyset \neq A' \subset E'.$$

In this case we have $\mathcal{T}=\mathcal{G}_{\downarrow 3}$. For a topology \mathcal{T}' on E' the equality $\mathfrak{Z}=\mathfrak{Z}_{\mathcal{T}}$, holds iff for any $x' \in E'$ the filter $\mathfrak{f}(x')$ agrees with the filter generated by the inverse images $g^{-1}(V')$ of \mathcal{T}' -neighbourhoods V' of x'.

PROOF. Supposing that \mathfrak{J} is a perfect topogenous g-family, with the choice $\mathfrak{f}(x')=\mathfrak{z}(x')$ (2.9.2) is true (see [8], (1.6)). If we put $\mathscr{T}=\mathscr{T}_{4\mathfrak{J}}$, then \mathscr{T} is a topology on E (cf. (2.5.4)). $\mathfrak{z}(x')$ is \mathscr{T} -round, because $X\in\mathfrak{z}(x')$ and $\mathfrak{z}\subset\mathfrak{z}^2$ imply $Y\in\mathfrak{z}(x')$ and $X\in\mathfrak{z}(g(Y))$ for a set $Y\subset E$, that is $Y<_{\mathfrak{z}_3}X$. Finally $x<_{\mathfrak{z}_3}V$, iff $Y\in\mathfrak{z}(g(X))$, thus (2.9.1) is satisfied.

Conversely, (2.9.1)—(2.92) implies [8] (1.6.1)—(1.62), therefore \mathfrak{Z} is a perfect topogenous g-mapping. We have to prove $\mathfrak{Z} \subset \mathfrak{Z}^2$ in accordance with axiom (F2). If $X \in \mathfrak{Z}(A')$ for a set $A' \neq \emptyset$, then $x' \in A'$ implies the existence of a set $Y_{x'} \in \mathfrak{f}(x')$ such that $Y_{x'} < X$, where $\mathcal{T} = \{<\}$. From the perfectness of < we get $Y = \bigcup_{x' \in A'} Y_{x'} < X$, and $Y \supset Y_{x'} \in \mathfrak{f}(x')$ for every $x' \in A'$, thus $Y \in \mathfrak{Z}(A')$. At the same time, for $x \in Y$, the set X is a \mathcal{T} -neighbourhood of x, consequently by (2.9.1) $X \in \mathfrak{f}(g(x))$, so that

 $X \in \mathfrak{Z}(g(Y))$. The first part of the theorem is proved.

By (2.9.2) $\mathfrak{z}(x') = \mathfrak{f}(x')$ for any $x' \in E'$, thus owing to (2.9.1) \mathscr{L}_{13} is obviously identical with \mathscr{T} . Finally let $\mathscr{T}' = \{<'\}$ be a topology on E' such that g(E) is \mathscr{T}' -dense. Then we have $\mathfrak{z}_{<'}(x') = \{X \subset E: g^{-1}(V') \subset X, x' < V'\}$. If $\mathfrak{z} = \mathfrak{z}_{<'}$, then $\mathfrak{f}(x') = \mathfrak{z}(x') = \mathfrak{z}_{<'}(x')$ for every $x' \in E'$. Conversely, $\mathfrak{z}_{<'}$ is perfect (see [8], (2.3.2)), hence if $\mathfrak{z}_{<'}(x') = \mathfrak{f}(x')$ for any $x \in E'$, then $\mathfrak{z}_{<'}(A') = \bigcap_{x' \in A'} \mathfrak{z}_{<'}(x') = \bigcap_{x' \in A'} \mathfrak{f}(x') = \mathfrak{z}_{<'}(x') = \mathfrak$

For the formulation of the following corollary of (2.9) we need to use the notion of a monotone mapping h belonging to a given family of filters in E, and the syntopogenous structure $h(\mathcal{S})$, which was defined e.g. in [7] (and also in [3], (0.4), th. 3.1)

(2.10) Corollary. Let $3 = \{3\}$ be a perfect topogenous g-family, $\mathcal{T} = \mathcal{G}_{+3}$, and let h denote the monotone mapping belonging to the filters $\mathfrak{Z}(x')$ $(x' \in E')$. Then $3 = \mathfrak{Z}_{h(\mathcal{T})^p}$.

PROOF. By (2.9) the conditions of [7], (2.3) are fulfilled, thus the filter generated by the inverse images of $h(\mathcal{F})^p$ -neighbourhoods of x' agrees with the filter $\mathfrak{z}(x')$ for every $x' \in E'$.

3. Applications in extension theory

In the first part of this chapter a generalization of th. (6.1.2) of [2] will be given with a determination of a class of syntopogenous structures on E', in which the structure $h(\mathcal{S})$ studied in ch. 1—2. of [7] is the coarsest one.

First of all let us consider the following construction:

- (3.1) **Theorem.** Let \mathscr{G} be a syntopogenous structure on E and $\mathfrak{Z}_0 = \{\mathfrak{Z}_0\}$ be a topogenous g-family such that $\mathscr{G}^t \prec \mathscr{G}_{\mathfrak{Z}_0}$. Then we have a syntopogenous g-family $\mathfrak{Z}^* = \mathfrak{Z}(\mathscr{S}, \mathfrak{Z}_0)$ consisting of the topogenous g-mappings $\mathfrak{Z}(\prec, \mathfrak{Z}_0)$ defined for every $\prec \in \mathscr{G}$ as follows:
- (3.1.1) $X \in \mathfrak{Z}(<,\mathfrak{Z}_0)(A')$ iff there is $V \in \mathfrak{Z}_0(A')$ with V < X. The syntopogenous g-family \mathfrak{Z}^* has the following properties:
- (3.1.2) $\mathcal{S}_{\downarrow 3^*} \sim \mathcal{S}$.
- (3.1.3) $3^{*t} < 3_0$.
- (3.1.4) $3^{*t} = 3_0$ provided $\mathcal{G}^t = \mathcal{G}_{+3_0}$.
- (3.1.5) 3^* is finer than every syntopogenous g-family 3_1 such that $\mathcal{L}_{43_1} \triangleleft \mathcal{L}_{3_1} \triangleleft \mathcal{L}_{3_1}$ and $3_1^t \triangleleft 3_0$.

In view of the last property of \mathfrak{Z}^* , it will be called the fine syntopogenous g-family corresponding to \mathscr{S} and \mathfrak{Z}_0 .

PROOF. We prove that $3=3(<,3_0)$ is a topogenous g-mapping for every $<\in\mathcal{G}$. (M0): E < E and $E \in \mathfrak{z}_0(A')$ implies $E \in \mathfrak{z}(A')$, i.e. $\mathfrak{z}(A') \neq \emptyset$. If $Y \supset X \in \mathfrak{z}(A')$, then we have a set $V \in \mathfrak{z}_0(A')$ such that V < X, thus V < Y and $Y \in \mathfrak{z}(A')$. (M1): $\emptyset < \emptyset$ and $\emptyset \in \mathfrak{z}_0(\emptyset)$, therefore $\emptyset \in \mathfrak{z}(\emptyset)$. Conversely, if $\emptyset \in \mathfrak{z}(A')$, then $V < \emptyset$ for some $V \in \mathfrak{z}_0(A')$, but this implies $V = \emptyset$, and owing to property (M1) of \mathfrak{z}_0 we get $A' = \emptyset$. (M2): If $X \in \mathfrak{z}(A')$, then $g^{-1}(A') \subset V < X$ with a suitable $V \in \mathfrak{z}_0(A')$, hence $g^{-1}(A') \subset X$. (M3): If $A' \subset B'$ and $X \in \mathfrak{z}(B')$, then there is a set $V \in \mathfrak{z}_0(B') \subset \mathfrak{z}_0(A')$ such that V < X, from this $X \in \mathfrak{z}(A')$ follows.

Suppose $X \in \mathfrak{Z}(A')$ and $Y \in \mathfrak{Z}(B')$. Then V < X and W < Y for some $V \in \mathfrak{Z}_0(A')$ and $W \in \mathfrak{Z}_0(B')$. < and \mathfrak{Z}_0 are topogenous, therefore $V \cap W < X \cap Y$ and $V \cup W < X \cup Y$, further $V \cap W \in \mathfrak{Z}_0(A' \cap B')$ and $V \cup W \in \mathfrak{Z}_0(A' \cup B')$. This gives the topogenity of \mathfrak{Z} .

Obviously, if $<_1$, $<_2 \in \mathcal{G}$ and $<_1 \cup <_2 \subset < \in \mathcal{G}$, then $\mathfrak{Z}(<_1, \mathfrak{Z}_0) \cup \mathfrak{Z}(<_2, \mathfrak{Z}_0) \subset \mathfrak{Z}(<, \mathfrak{Z}_0)$, thus \mathfrak{Z}^* satisfies axiom (F1). Finally suppose that < is an arbitrary member of \mathcal{G} , and let us choose $<_1 \in \mathcal{G}$ so that $< \subset <_1^3$, after this let \mathfrak{Z} and \mathfrak{Z}_1 denote $\mathfrak{Z}(<, \mathfrak{Z}_0)$ and $\mathfrak{Z}(<_1, \mathfrak{Z}_0)$ respectively. If $X \in \mathfrak{Z}(A')$ then V < X for some $V \in \mathfrak{Z}_0(A')$. Assume $V <_1 Y <_1 W <_1 X$. In this case we have $Y \in \mathfrak{Z}_1(A')$, and from $\mathcal{G}^1 \subset \mathcal{G}_{\mathfrak{Z}_0}$ the relation $W \in \mathfrak{Z}_0(g(Y))$ follows, hence $X \in \mathfrak{Z}_1(g(Y))$. We got $\mathfrak{Z} \subset \mathfrak{Z}_1^2$, i.e. \mathfrak{Z}^* satisfies axiom (F2), too.

Let us show that 3^* has the properties listed in (3.1.2)—(3.1.5).

- (3.1.2): Put $\mathfrak{z}=\mathfrak{z}(<,\mathfrak{z}_0)$, where < is an arbitrary element of \mathscr{G} . If $A<_{\mathfrak{z}_0}B$ then $B\in\mathfrak{z}(g(A))$, thus there is a set $V\in\mathfrak{z}_0(g(A))$ such that V< X. But because of (M2) $A\subset g^{-1}(g(A))\subset V$, so that A< B, i.e. $<_{\mathfrak{z}_0}\subset <$. Conversely, suppose that $<\mathscr{E}\mathscr{G}$ and $<_1\mathscr{E}\mathscr{G}$ for which $< \subset <_1^2$. If A< B then $A<_1V<_1B$ for some $V\subset E$. By $\mathscr{S}^t < \mathscr{S}_{\mathfrak{z}_0}$ we have $V\in\mathfrak{z}_0(g(A))$, therefore $B\in\mathfrak{z}_1(g(A))$, where $\mathfrak{z}_1=\mathfrak{z}(<_1,\mathfrak{z}_0)$. This shows $< \subset <_{\mathfrak{z}_0}$.
- (3.1.3): If $X \in \mathfrak{Z}(A')$ for some $\mathfrak{Z} = \mathfrak{Z}(<, \mathfrak{Z}_0)$, $< \in \mathcal{S}$, then V < X holds for a set $V \in \mathfrak{Z}_0(A')$, and since $V \subset X$, from (M0) we get $X \in \mathfrak{Z}_0(A')$.
- (3.1.4): Assume that $\mathscr{S}^t = \mathscr{S}_{43_0}$ and $X \in \mathfrak{F}_{3_0}(A')$. In view of $\mathfrak{F}_{3_0} \subset \mathfrak{F}_{3_0}^2$ we can choose a set $V \in \mathfrak{F}_{0_0}(A')$ such that $X \in \mathfrak{F}_{0_0}(g(V))$. But this means $V = \mathfrak{F}_{43_0}X$, and because of our condition we have V = X for some $V \in \mathscr{S}$. If $\mathfrak{F}_{3_0}(V) = X$ is denoted by $\mathfrak{F}_{3_0}(V) = X$, then we can write $X \in \mathfrak{F}_{3_0}(A')$, and obviously $X \in \mathfrak{F}_{3_0}(A')$.
- (3.1.5): Let \mathfrak{Z}_1 denote a syntopogenous g-family such that $\mathscr{G}_{\mathfrak{Z}_2} \ll \mathscr{G}$ and $\mathfrak{Z}_1' \ll \mathfrak{Z}_0$. Suppose that $\mathfrak{Z}_1 \in \mathfrak{Z}_1$ is arbitrary, $\mathfrak{Z}_2 \in \mathfrak{Z}_1$, for which $\mathfrak{Z}_1 \subset \mathfrak{Z}_2^2$, further $\mathfrak{Z}_2 \in \mathscr{G}_1$ such that $\mathfrak{Z}_{\mathfrak{Z}_2} \subset \mathfrak{Z}_2$, finally let us consider $\mathfrak{Z}_3 = \mathfrak{Z}_3 \subset \mathfrak{Z}_3$. If $X \in \mathfrak{Z}_1(A')$ then there exists $V \in \mathfrak{Z}_2(A')$ such that $X \in \mathfrak{Z}_2(g(V))$. This means $V \subset \mathfrak{Z}_3 \subset \mathfrak{Z}_3$, consequently $V \subset X$. From $\mathfrak{Z}_1' \ll \mathfrak{Z}_3$ we can deduce $V \in \mathfrak{Z}_3(A')$, thus in accordance with our notations, this gives $X \in \mathfrak{Z}_3(A')$, accordingly $\mathfrak{Z}_1 \subset \mathfrak{Z}_3$, and in general $\mathfrak{Z}_1 \subset \mathfrak{Z}_3^*$.
- (3.2) **Theorem.** Let \mathscr{S} be a syntopogenous structure on E. Suppose that $\mathfrak{f}(x')$ is an \mathscr{S} -round filter in E for any $x' \in E'$ such that $\mathfrak{f}(g(x))$ is the filter of \mathscr{S} -neighbourhoods of every point $x \in E$. Then we have a perfect topogenous g-family $\mathfrak{Z}_0 = \{\mathfrak{z}_0\}$ determined by

(3.2.1.)
$$\mathfrak{z}_0(\emptyset) = 2^E \quad and \quad \mathfrak{z}_0(A') = \bigcap_{x' \in A'} \mathfrak{f}(x') \quad for \quad \emptyset \neq A' \subset E',$$

for which $\mathcal{G}^{tp} = \mathcal{G}_{\downarrow_{30}}$. If \mathfrak{Z}^* is the fine syntopogenous g-family corresponding to \mathcal{G} and \mathfrak{Z}_0 , then denoting by h the monotone mapping belonging to the filters $\mathfrak{f}(x')$

- (3.2.2) $3^* \sim 3_{h(\mathcal{S})}$ and $3_{h(\mathcal{S})^{t_p}} = 3_0$.
- (3.2.3) $h(\mathcal{S})$ is the coarsest of all syntopogenous structures \mathcal{S}' on E' such that g(E) is \mathcal{S}' -dense and $\mathfrak{Z}^* \triangleleft \mathfrak{Z}_{\mathfrak{S}'} \triangleleft \mathfrak{Z}_{\mathfrak{S}_0}$.

PROOF. Putting $\mathcal{T} = \mathcal{S}^{tp}$, the first part of the theorem can be read from (2.9).

- (3.2.2): Supposing $< \in \mathcal{S}$ and $\mathfrak{z} = \mathfrak{z}(<,\mathfrak{z}_0)$, we have $\mathfrak{z} \subset \mathfrak{z}_{<'}$, where $<' = h(<)^q \in h(\mathcal{S})$, and at the same time $\mathfrak{Z}^* \prec \mathfrak{Z}_{h(\mathcal{S})}$. In fact, if $X \in \mathfrak{z}(A')$, then $V \prec X$ for some $V \in \mathfrak{z}_0(A')$. In this case $A' \subset h(V)h(<)^q h(X)$. $g^{-1}(h(X) \subset X)$, since $x \in E$, $X \in \mathfrak{f}(g(x))$ gives that X is an \mathcal{S} -neighbourhood of x, consequently $x \in X$. This means $X \in \mathfrak{z}_{<'}(A')$. Conversely, from [7], (2.3) we can deduce that the filter generated by the inverse images of $h(\mathcal{S})$ -neighbourhoods of any point $x' \in E'$ is exactly $\mathfrak{f}(x')$ hence by (2.9) we have $\mathfrak{Z}_{h(\mathcal{S})^{t_p}} = \mathfrak{Z}_0$. After this the inequality $\mathfrak{Z}_{h(\mathcal{S})} \prec \mathfrak{Z}^*$ will be verified. On the basis of (1.5) and (2.2.3) we can state $\mathfrak{Z}_{h(\mathcal{S})}^t \prec \mathfrak{Z}_{h(\mathcal{S})}^{t_p} = \mathfrak{Z}_{h(\mathcal{S})^{t_p}} = \mathfrak{Z}_0$. Simultaneously $\mathfrak{S}_{4\mathfrak{Z}_h(\mathcal{S})} = g^{-1}(h(\mathcal{S})) \sim \mathcal{S}$ (see (2.6) and [7], (2.3), (1.2)). In view (3.1.5), from these we get $\mathfrak{Z}_h(\mathcal{S}) \prec \mathfrak{Z}^*$.
- (3.2.3): Assume that \mathscr{G}' is a syntopogenous structure on E' such that $3^* < 3_{\mathscr{G}'} < 3_0$. We shall show $h(\mathscr{S}) < \mathscr{G}'$. Indeed, suppose that $<^* = h(<)^q$ for some $< \in \mathscr{S}$, and let us choose an element <' of \mathscr{G}' such that $3 \subset 3_{<'}$ for $3 = 3(<, 3_0)$. Putting $<_1' \in \mathscr{G}'$, for which $<' \subset <_1'^2$, we can state $<^* \subset <_1'$. In fact, if $A' \subset h(A)$, $h(B) \subset B'$ and A < B, then $A \in \mathfrak{f}(x')$ for $x' \in A'$, thus $A \in \mathfrak{z}_0(A')$, and consequently $B \in \mathfrak{z}_0(A')$. We have a set $X' \subset E'$ such that A' < 'X' and $g^{-1}(X') \subset B$. If $A' <_1' Y' <_1' X'$, then for any $x' \in Y'$ the inequality $x' <_1' X'$ holds, therefore $B \supset g^{-1}(X') \in \mathfrak{z}_{<_1'}(x') \subset \mathfrak{z}_0(x') = \mathfrak{f}(x')$. This gives $Y' \subset h(B)$, accordingly $A' <_1' B'$. We got $h(<) \subset <_1'$, consequently $h(<)^q \subset <_1'^q = <_1'$, i.e. $h(\mathscr{S}) \subset \mathscr{S}'$.
- (3.3) Corollary. Under the conditions of (3.2) let g be an injection. Then $h(\mathcal{S})$ is the coarsest of all syntopogenous structures \mathcal{S}' on E' such that (E', \mathcal{S}, g) is an extension of $[E, \mathcal{S}]$ giving the filters $\mathfrak{f}(x')$, as trace filters, and \mathcal{S}' induces the fine syntopogenous g-family corresponding to \mathcal{S} and \mathfrak{Z}_0 .

PROOF. For such an extension (E', \mathcal{S}', g) by (2.9) we have $3^* \sim 3_{\mathcal{S}'} < 3_{\mathcal{S}'}$ tp = 3_0 , thus from (3.1.5) $h(\mathcal{S}) < \mathcal{S}'$ follows.

(3.4) Corollary. ([2], (6.1.2)). Under the conditions of (3.2) let g be an injection, and $\mathcal{S} = \mathcal{T}$ be a topology. Then $h(\mathcal{T})^p$ is the coarsest of those topologies \mathcal{T}' on E' for which (E', \mathcal{T}', g) is an extension of $[E, \mathcal{T}]$ with the trace filters f(x').

PROOF. Denoting by 3^* the fine syntopogenous g-family corresponding to \mathcal{F} and 3_0 , from (3.1.3) $3^* < 3_0$ follows. But simultaneously $\mathcal{L}_{43_0} = \mathcal{F}$ and (3.1.5) implies $3_0 < 3^*$, thus $3_0 = 3^*$ (let us observe that by (3.1.1) 3^* consists of a single g-mapping). Consequently, if \mathcal{F}' is a topology as in the theorem, then $3^* = 3_0 = 3_{\mathcal{F}'}$, therefore $h(\mathcal{F}) < \mathcal{F}'$. From this $h(\mathcal{F})^p < \mathcal{F}'^p = \mathcal{F}'$ can be deduced.

(3.5) **Theorem.** Let g be an injection, \mathcal{S} be a syntopogenous structure on

E and 3 be an arbitrary syntopogenous g-family. In order that there exist a syntopogenous structure \mathscr{G}' on E' such that (E', \mathscr{G}', g) is an extension of $[E, \mathscr{G}]$ and $3 \sim 3_{\mathscr{G}'}$, it is necessary and sufficient that $\mathscr{G} \sim \mathscr{G}_{43}$. In this case \mathscr{G}_{13} is the finest of all syntopogenous structures on E' with these properties.

PROOF. If (E', \mathcal{S}', g) is an extension of $[E, \mathcal{S}]$ such that $3 \sim 3_{\mathcal{S}'}$, then $\mathcal{S} \sim g^{-1}(\mathcal{S}') = \mathcal{S}_{43\mathcal{S}'} \sim \mathcal{S}_{43}$ (see (2.6)). Conversely, suppose $\mathcal{S} \sim \mathcal{S}_{43}$, and let \mathcal{S}^* denote the syntopogenous structure \mathcal{S}_{43} on E'. Then g(E) is \mathcal{S}^* -dense, $3 = 3_{\mathcal{S}^*}$, and $\mathcal{S} \sim \mathcal{S}_{43} = \mathcal{S}_{43\mathcal{S}^*} = g^{-1}(\mathcal{S}^*)$, finally \mathcal{S}^* is the finest of all syntopogenous structures on E' inducing 3 (see (2.3) and (2.6)).

The knowledges concerning extensions providing a prescribed family of trace filters can be completed as follows:

(3.6) **Theorem.** Under the conditions of (3.2) let g be an injection. Then \mathcal{L}_{13^*} is the finest of all syntopogenous structures \mathcal{L}' on \mathcal{L}' such that $(\mathcal{L}', \mathcal{L}', g)$ is an extension of $[E, \mathcal{L}]$ with the filters f(x'), as trace filters.

PROOF. Put $\mathscr{S}^* = \mathscr{S}_{13}^*$. Then (E', \mathscr{S}^*, g) is in fact an extension of $[E, \mathscr{S}]$ (see (3.1.2) and (3.5)). $3_{\mathscr{S}^*} = 3^*$, therefore by (3.1.3) $3_{\mathscr{S}^*} t_p = 3^{*tp} < 3_{\mathbb{G}}$, at the same time (3.2.3) implies $h(\mathscr{S}) < \mathscr{S}^*$. From this and form (3.2.2) we can deduce $3_0 = 3_h(\mathscr{S})_{tp} < 3_{\mathscr{S}^*} t_p$, so that $3_{\mathscr{S}^*} t_p = 3_0$. In view of (2.9) this means that the extension (E', \mathscr{S}^*, g) gives the filters $\mathfrak{f}(x')$, as trace filters. Suppose that the extension (E', \mathscr{S}', g) of $[E, \mathscr{S}]$ has the same trace filters $\mathfrak{f}(x')$ (i.e. $3_{\mathscr{S}'} t_p = 3_0$). Then putting $3 = 3_{\mathscr{S}'}$, we have $\mathscr{S} \sim \mathscr{S}_{43}$ and $3^t = 3_{\mathscr{S}'} t < 3_0$ (cf. (3.5)). From the fineness of 3^* (see (3.1.5)) the inequality $3 < 3^*$ follows, but owing to (2.3) this gives $\mathscr{S}' < \mathscr{S}^*$.

Remark. This finest extension described in the theorem can be constructed in

another way (see [3], ch. 0 (p. 60), (0.6) and th. 2.2).

On the basis of the statements of [7], (2.1) and (2.4) we can verify that for the existence of an extension (E', \mathcal{S}', g) of the syntopogenous space $[E, \mathcal{S}]$ having a prescribed family $\{\mathfrak{f}(x'): x' \in E'\}$ of trace filters, it is necessary and sufficient that any filter $\mathfrak{f}(x')$ be \mathcal{S} -round, and $\mathfrak{f}(g(x))$ be the filter of \mathcal{S} -neighbourhoods of every point $x \in E$. In the last part of the chapter this result will be generalized.

For an arbitrary syntopogenous space $[X, \mathcal{G}]$, we shall say that $\mathcal{G}(A) = \{V \subset X : A < V \text{ for some } < \in \mathcal{G} \}$ is the \mathcal{G} -neighbourhood filter of $\emptyset \neq A \subset X$. If (E', \mathcal{G}', g) is an extension of the syntopogenous space $[E, \mathcal{G}]$, the system $\{g^{-1}(\mathcal{G}'(A')) : \emptyset \neq A' \subset E'\}$ will be called the *full system of trace filters* of this extension, where $g^{-1}(\mathcal{G}'(A'))$ consists of the inverse image $g^{-1}(V')$ of members V' of $\mathcal{G}'(A')$.

(3.7) Lemma. Let (E', \mathcal{S}', g) be an extension of the syntopogenous space $[E, \mathcal{S}]$. Then the full system of trace filters of this extension is identical with $\{3_{<'}(A'): \emptyset \neq A' \subset E'\}$, where $\mathcal{S}'' = \{<'\}$.

PROOF. It is clear by the definition and [8], (2.1)—(2.2).

(3.8) Theorem. Let g be an injection, and $\mathscr G$ be a syntopogenous structure on E. Let us consider a filter $\mathfrak{f}(A')$ in E for any $\emptyset \neq A' \subset E'$. Then the following statements are equivalent:

- (3.8.1) There exists an extension (E', \mathcal{S}', g) of $[E, \mathcal{S}]$ such that $\{f(A'): \emptyset \neq A' \subset E'\}$ is the full system of trace filters of this extension.
- $\mathfrak{f}(A')$ is an \mathscr{G} -round filter in E for any $\emptyset \neq A' \subset E'$, in particular $\mathfrak{f}(g(A)) =$ (3.8.2) $=\mathcal{S}(A)$ for every $\emptyset \neq A \subset E$, finally, if A', B', are non empty subsets of E', then $f(A') \cap f(B') = f(A' \cup B')$.

PROOF. (3.8.1) \Rightarrow (3.8.2): Suppose $X \in \mathfrak{f}(A')$. Then for some $<' \in \mathscr{G}'$ we have A' <' V' and $g^{-1}(V') = X$. If $<'_1 \in \mathscr{G}'$, $<' \subset <'_2^2$ and $< \in \mathscr{G}$ such that $g^{-1}(<'_1) \subset <$, then $A' <'_1 W' <'_1 V'$ for a suitable W', and with the notation $g^{-1}(W') = Y$ we get $Y \in \mathfrak{f}(A')$ and Y < X, therefore $\mathfrak{f}(A')$ is \mathscr{G} -round. We know $g^{-1}(\mathscr{G}') \sim \mathscr{G}$, thus $X \in \mathscr{S}(A)$ iff $E' - g(E - X) \in \mathscr{S}'(g(A))$. g is an injection, thus from X = $=g^{-1}(E'-g(E-X))$ the equality $f(g(A))=\mathcal{S}(A)$ follows. Obviously $f(A'\cup B')\subset$ $\subset \mathfrak{f}(A') \cap \mathfrak{f}(B')$, and if $X = g^{-1}(V') = g^{-1}(W')$, where $A' <_1'V'$, $B' <_2'W'$ ($<_1'$, $<_2' \in \mathscr{S}'$), then, for $<_1' \cup <_2' \subset <' \in \mathscr{S}'$, we have $A' \cup B' <' V' \cup W'$, thus $g^{-1}(V' \cup W') =$ $=g^{-1}(V')\cup g^{-1}(W')=X$ shows that $f(A')\cap f(B')\subset f(A'\cup B')$ is also true.

 $(3.8.2) \Rightarrow (3.8.1)$: First of all we prove that putting $\mathfrak{z}_0(\emptyset) = 2^E$, $\mathfrak{z}_0(A') = \mathfrak{f}(A')$ $(\emptyset \neq A' \subset E')$, $\Im_0 = \{\Im_0\}$ is a topogenous g-family, for which $\mathscr{S}^t = \mathscr{S}_{4\Im_0}$ holds. In fact, \mathfrak{z}_0 clearly satisfies axioms (M0) and (M1). If $A' \subset B'$, then $\mathfrak{z}_0(B') =$ $=3_0(A' \cup B')=3_0(A') \cap 3_0(B') \subset 3_0(A')$, thus (M3) is also fulfilled. For the verification of (M2) let us suppose $X \in 3_0(A')$. Then $x \in E$, $g(x) \in A'$ implies $X \in 3_0(g(x))=$ = $\mathcal{S}(x)$ (see (M3)), hence $x \in X$. This means $g^{-1}(A') \subset X$. The topogenity of \mathfrak{z}_0 can be deduced from [8], (1.3). One can see that $\mathfrak{z}_0 \subset \mathfrak{z}_0^2$. In fact, if $X \in \mathfrak{z}_0(A')$, then from the roundness of $\mathfrak{z}_0(A')$ we get a set $Y \in \mathfrak{z}_0(A')$ such that Y < X, where $< \in \mathcal{S}$. But this implies $X \in \mathfrak{F}_0^2(A')$, since $X \in \mathcal{S}(Y) = \mathfrak{F}_0(g(Y))$. Finally suppose $\mathcal{S}^t = \{ <_0 \}$. Then $A <_0 B$ iff $B \in \mathcal{S}(A) = \mathfrak{Z}_0(g(A))$, and this is equivalent to $A <_1 \mathfrak{Z}_0 B$. This shows $\mathcal{S}^t = \mathcal{S}_{\downarrow 3_0}$.

From here we shall have an easy job, namely assume that 3* is the fine syntopogenous g-family corresponding to \mathcal{G} and \mathcal{G}_0 . Then from $\mathcal{G}^t = \mathcal{G}_{130}$ we get $3^{*t} = 3_0$ (see (3.1.4)). (3.1.2) and (3.5) show that there is an extension (E', \mathcal{S}', g) of $[E, \mathcal{S}]$ such that $3^* \sim 3_{\mathcal{S}'}$. This implies $3_{\mathcal{S}'} = 3^t = 3_0$, which means that $\{3_0(A'): \emptyset \neq A' \subset E'\} = \{f(A'): \emptyset \neq A' \subset E'\}$ is the full system of trace filters of the extension in question (see lemma (3.7)).

References

- [1] Á. Császár, Foundations of General Topology (Oxford-London-New York-Paris, 1963).
- [2] A. Császár, General Topology (Budapest-Bristol, 1978).
- [3] Á. Császár and K. Matolcsy, Syntopogenous extensions for prescribed topologies, Acta Math. Acad. Sci. Hung. 37 (1981), 59-75.
- [4] S. GACSÁLYI, On Hacque's E-mappings and on semi-topogenous orders, Publ. Math. (Debrecen) 12 (1965), 265—270.
- [5] M. HACQUE, Sur les E-structures, C. R. Acad. Sci. Paris 254 (1962), 1905—1907 and 2120—2122.
- [6] M. Hacque, Étude des E-structures, Seminaire Choquet (Initiation à l'Analyse) 1re anne, 1962, no. 6 (Mimeographed.)
- [7] K. MATOLCSY, On extensions of syntopogenous spaces, Publ. Math. (Debrecen) 28 (1981), 103-119.
- [8] K. MATOLCSY, Topogeneous g-mappings, Publ. Math. (Debrecen) 30 (1983), 93—100.

KÁLMÁN MATOLCSY

SZABÓ ISTVÁN ALT. TÉR 8. XIV 112. H—4032

HUNGARY

(Received Oktober 21, 1981)