Syntopogenous g-families and their applications
in extension theory

By KALMAN MATOLCSY (Debrecen)

0. Introduction

In [8] the following generalization of the notion of an Hacque’s E-mapping
([5]—[6]) was introduced:

For a given single valued mapping g: E~E’, a mapping 3 of 2¥ into the
set of all systems of subsets of E is called a g-mapping iff it satisfies the following
conditions for any A’, B'CE’ and X, YCE:

(M0) 3(4)#0, and YD Xc3(A") implies Ye3(A”).

(M) 0e3(4)) iff A'=0.

(M2) Xe€3(A") implies g~ '(A)CX.

(M3) A’CB’ implies 3(B")c3(A4").

If 3,, 3, are two g-mappings then 3,3, (3, is coarser than 3,, or 3, is finer than

3,) means 3,(A)C3,(A") for any A"CE’. A g.mapping 3 is said to be topogenous

iff X€3(4) and Y€3(B’) imply X Ye3(4'MNB’) and XUYez(4’UB'). 3 is

called perfect iff X, €3(4]) (icl) implies | X;€3(1) 47). It is known that 3 is
i€l il

a perfect topogenous g-mapping iff, for every x’€E’, there exists a filter f(x’)
in £ such that x€E, X€i(g(x)) imply x€X, 3(0)=2% and 3(4)= () {(x) for
x'cA
any P=A'CE".
If <" is a semi-topogenous order ([I]) on E’, and x€E’, x<"V'CE’ imply
g(E)NV’#0, then a g-mapping 3.. can be defined by

3 () ={X C E: A’ <E'—g(E-X)).

As an extension of a result of S. GACSALY1 ([4], prop. 1), the following duality theorem
was proved ([8], (2.4)): the correspondence <"—~3.. is surjective iff g is injective,
and <"—3. is injective iff g is surjective. Consequently <'—3_. is one-lo-one
iff so is g. The proof of this theorem required the construction of two semi-
topogenous orders: If 3 is a g-mapping then the definitions

A < ,BedAcB and g 1(B)E3(4),
and
A< Be 355(30‘4))

yield semi-topogenous orders <, and <, on E’ and E respectively.
In the present paper the notion of a syntopogenous g-family 3 will be introduced,
which consists of topogenous g-mappings with special properties. If g(E) is dense
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in the syntopogenous space [E’, '] ([1]), then 3, .={3.: <'€¥’} is a synto-
pogenous g-family. Conversely, if 3 is a given syntopogenous g-family then
F3={<y,:3€3} and H;={<,:3€3} are syntopogenous structures on E’
and E respectively. We shall study the correspondence % —+3s. In Chapter 3
some connections between the extensions of syntopogenous structures and the
syntopogenous g-families will be examined. E.g. a class of the extensions of a synto-
pogenous structure % will be given, in which the extension h(%) (see [7]: [3], th.
3.1) is the coarsest one, and this is a generalizations of a remarkable property of
the topological strict extensions ([2], (6.1.2)).

1. Syntopogenous g-families

This chapter will deal with various kinds of families of g-mappings, therefore
first of all we need to mention the following lemmas:

(1.1) Lemma. If {3;:icl=0} is a family of g-mappings then there exists a
g-mapping 3, which is the coarsest of all g-mappings finer than every 3; (i€l). 3 can
be defined by 3(A")=|]) 3;(A") for A’CE’. 3 will be denoted by \J 3;-

icr iel

(1.2) Lemma.

(1.2.1) If =] and <} are semi-topogenous orders on E’, g(E) is =j-dense ([8],
ch. 2) and <{C <;, then g(E) is also ~<-dense, and 3_, C3_;.

(1.2.2) If 3 and 3, are g-mappings and 3,C3,, then =, C =, and =, C
taa*
(1.3) Proposition. Let 3 be a g-mapping. We have a g-mapping denoted by 3,
Sfor which

(1.3.1) X€3*(A") iff there exists Y€3(A") such that Xe3(g(Y)).
3* is coarser than 3, and it has the properties listed below:

(1.3.2) If < is a semi-topogenous order on E’, and g(E) is ~<'-dense, then
3« C3%-

(1.3.3) If g is injective and 3 is topogenous, then <. Q <j;.

(1.3.4) <. C <} always holds.

PROOF. 3%(A")c3(A’) is true, because X€3%(A4") implies the existence of a set
Ye3(A") such that X€3(g(Y)), and by (M2) Xog Y (g(Y)) > Yez(4), thus in
view of (M0) Xe3(A"). 3* is a g-mapping. (MO0): Ec3*(A4’), since E€3(A’) and
Ec3(g(E)). If Yo X¢€32(A’) then for a suitable Y,€3(4”) we have Yo X¢3(g(Y,)),
therefore Y€32(4’). (MI1): 0€3(0) and 0¢3(g(0)), thus 0€3*(0). Conversely, if
0€3%(A4), and Y€3(A) such that P€3(g(Y)), then by (M2) Ycg(g(Y))<0,
thus Y=0. Consequently because of property (M1) of 3 we get A"=0. (M2):
If Xe32(4") and Y€3(A’) such that X¢3(g(Y)), then g~*(A")c Ycg ' (g(Y))CX.
(M3): If X€3*(B’) and A’CB’, then from Ye3(B)c3(A”) and X€3(g(Y)) the
relation X¢€3*(A”) follows.
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(1.3.2): Suppose X€3..:(A4"). Then A'<'C<'E’'—g(E—X), but this implies
g U C")e3(A"), and in view of g(g~'(C’))cC’, we have Xe3.(g(g '(C")),
that is Xe3z2.(4').

(1.3.3): Let us assume that g is injective and 3 is topogenous. Then A’ <,,B’
implies A"cB” and g '(B")€3*(A’). This means that there exists a set Ye3(A4")
such that g='(B")€3(g(Y)). Putting C'=A4"Ug(Y), we get A’ C’ and g (C")=
=Ye€3(A’), since g~(A)C Y. Similarly Y=g 1(g(¥Y))cg '(B") gives that g(Y)c
cg(g " (B))cB’ and g '(B)€3(A’). From these C’'CcB’ and g '(B')¢
€3(4’Ug(Y))=3(C") follows, so that A4"<, C"<,B".

(1.3.4): If A=,.B then Be3*(g(A)), thus there exists a set Ye3(g(A4)) such
that Bc3(g(Y)). This is equivalentto A<, Y<.B. |}

A family 3 of topogenous g-mappings will be called a syntopogenous g-family,
if the following conditions are fulfilled:

(F1) For any 3,, 3,63 there exists 3€3 such that 3, U 3, C3.

(F2) If 33 then there is 3,€3 with 3C 3.

If 3, and J, are syntopogenous g-families, then we shall say that 3, is
coarser than 3,, or equivalently 3, is finer than 3J3,,iff for any 3,63, there
exists 3,63, such that 3, C3,. This fact will be denoted by 3,<€3,. We shall
write 3y ~Js il 3, €3 and J. <€ 3;. Such families will be said to be equivalent.

A syntopogenous g-family is topogenous, if it consists of a single topogenous
g-mapping.

(1.4) Proposition. /f 3 is a syntopogenous g-family then a topogenous g-family
3 can be defined as follows:

(1.4.1) 3'={3.), where 3,=U{3: 3¢3}
3" is the coarset of all topogenous g-families finer than 3.

PrOOF. Let us prove that 3, is topogenous. Suppose X€3,(4) and Ye3,(B").
Then X€3,(4") and Ye€3,(B’) for some 3, 3.€3. If 3 U3 €363, then from the
topogenity of 3 we candeduce X YE3(A' M B)YC3,(4A'MNB") and XU Yez(A'UB")=
C30(A"UB’). (F1) is obviously satisfied by 3J3'. Finally put X€3,(4"). Then
Xe3(A’) for a suitable 3¢ 3. By (F2) Xe3j(4") for some 3,3, and from this
Xe33(A’) follows, hence (F2) is also fulfilled. Clearly 3<€3'. Let 3, be a topo-
genous g-family finer than 3. Then, for J3,={3,}, we have 3C3, for every 3€3,
therefore 3,C3 and 3'<3,. |}

A syntopogenous g-family will be said to be perfect if its elements are perfect
topogenous g-mappings.

(1.5) Proposition. Let 3 be a syntopogenous g-family. Then the definition

(1.5.1) 3’ = {31 3€ 3}

where

(1.5.2) 3@ =2F and 3?(A)= N 3(x) for D= A CE,
xcA
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yields a perfect syntopogenous g-family which is the coarsest of all perfect syntopogenous
g-families finer than 3. If 3 is topogenous then so is 3°, too.

Proor. If 3 is a topogenous g-mapping then 37 is a perfect topogenous
g-mapping by [8], (1.5). If 3,, 3.€3 then 3,U3.€3 implies 3fU3fC3" If 363
and 3,€3 such that 3C 3}, then 37 C 3% In fact, suppose X€3P(A4"), A"#0. Then,
for any x’€A’, there is a set Y,.€3,(x") such that X€3,(g(Y,)). Itis easy to show
Y= U Yo&sf(4), and Xesf( U g(¥o)=3(s(Y)), that is Xeaf*(4). If 4'=0

X eA cA
then X¢€3p%(A4’) is trivial by (M1) and (M0). From [8], (1.5) 3<3” follows, and
similarly, if 3<€J3, for a perfect syntopogenous g-family 3,, then 3’<J,.
If 3 is topogenous then 37 consists of a single g-mapping, too. |}

(1.6) Corollary. If 3 is a syntopogenous g-family then 3J'" is the coarsest
of all perfect topogenous g-families finer than 3. |}

2. Syntopogenous g¢-families and syntopogenous structures

Let us consider a syntopogenous structure %" on E’ such that g(E) is
F'-dense (that is g(E) is <"-dense for every <'€.%’). Then a family of topogenous
g-mappings is obtained by
(2.1) 3y = 3<: <€77}

(cf. [8], (2.3.1)).

(2.2) Proposition. /f &’ is a syntopogenous structure on E" such that g(E)
is &’-dense, then 3. is a syntopogenous g-family having the following properties:

22.1) B = By,
222) 38.= 3or.
(223) 3% = 3o

(2.2.4) If 9 istopogenous or perfect, then 3. also has the corresponding property.

Proor. If <, <€’ and < U<C <%’ then from (1.2.1) ;..U
Uaﬂ;cl’,d: follows. Put <'€%’ and =[(¢% so that <"C < then in view
of (1.3.2) we have 3. C3.2C3%;, thus J,. is a syntopogenous g-family. The
properties (2.2.1)—(2.2.3) are obvious (see [8], (2.3.2)), and because of (1.4)—(1.5)
the statement (2.2.4) is their direct consequence. |Jj

Further we shall study the correspondence ' — 3. .

(2.3) Theorem. Let g be an injection, and 3 be a syntopogenous g-family. Then
(2.3.1) Hs = (=, 3€ 3}

is a syntopogenous structure on E’, g(E) is S;dense, and J:\h{ yo Ky is the
finest of all syntopogenous structures &' on E’, for which g(E) is S -dense and

3 <3
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ProOF. By [8], (2.8.1) and statements (1.2.2), (1.3.3) of the present paper
3 is in fact a syntopogenous structure on E’, and g(E) is 9,’3-dense (see [8],
(2.7)). From[8],(2.7) 3= 3, follows. Let us suppose that %’ is a syntopogenous
structure on E’, g(E) is .Sf’-dcnse, and 3, <€3. Then, for <'€%’, thereis 3¢J3
such that 3., €3, and because of 8], (2.7) we have <'C =,, sothat ' <%;. |

(2.4) Proposition. If g is an injection then the syntopogenous structure %3 has
the following properties for any syntopogenous g-family J3:

@24.1) S o,
(24.2) Sy = Sige.
2.43) S = P,

If 3 is topogenous or perfect, then %5 is of this kind, too.
PROOF. It can be put together from (1.4), (1.5), and [8], (2.8). |

(2.5) Proposition. Ler 3 be an arbitrary syntopogenous g ﬁrm:b Then we have
a syntopogenous structure %3 on E determined as follows:

(24.1) Sz = {<i3: 3€3}

The syntopogenous structure 4,4 has the following properties:
(2.5.3) S5 = Sy

(2.5.4) .9:'{ = Hger.

If 3 is topogenous or perfect, then so is S5, too.

Proor. (1.2.2), (1.3.4), [8], (2.11.1) give that ¥4 is a syntopogenous structure
on E. The properties listed in (2.5.2)—(2.5.4) can be deduced from (1.4), (1.5)
and [8], (2.11.2). |}

(2.6) Theorem. Ler & be a syntopogenous structure on E’, and g(E) be
F’'-dense. Then S35, =8 UF") holds.

Proor. See [8], (2.10). |}

(2.7) Theorem. Suppose that g is a surjection, and 3 is a syntopogenous
g-family. Then the mapping g is compatible with the s'mfopugcm)m structure 43,
and ¥'=g(%3) is the unique syntopogenous structure on (up to equivalence)
such that 3~ 34 .

PrOOF. If A=, B for a mapping 3€J, then Bec3(g(A4)), and from (M2)
we deduce g 1(g(A))c:JE? therefore g is compatible with &, (see [1], p. 106).
This gives thdt the syntopogenous structure &’=g(%3 on E is defined. We
show that 3. ~ 3. In fact, suppose 33 and = —g(-c:,) In this case X€3..(4)
implies A"<"B” and g~'(B")c X for some set B'CE’ (see [8], (2.2)). This means
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that g='(4") <, ' (B")CX, thus by A'=g(g7(4") from the definition of =
we get X€3(A’), so that 3..C3 Conversely, let 3 be an element of 3, further
31, 32€3 such that 3C3%, 3,C32, and put <'=g(<,,). If Xc3(4") then there
exists Y€3,(4") for which X¢€3,(g(Y)), and there is a set Z¢c3,(4") such that
Y€3,(8(2)). g (A)cZ<,,Ycg ' (g(Y)), thus A <g(¥Y) and g '(g(Y))CX,
consequently X€3..(4"). We got 3C3... If &” is another syntopogenous structure
on E’ such that 34.~3, then from (2.6) we can deduce g~ '(¥")~ % ;~g (¥,
and by [1], (9.30) this implies " ~%". |}

The results mentioned above can be summarized as follows:

(2.8) Theorem. /f we do not distinguish equivalent syntopogenous structures and
g-families respectively from each other, then

(2.8.1) if g is injective, then &'~ 3y is surjective.
(2.8.2) 1If g is surjective, then &' — 34 is one-to-one.
(2.8.3) If ¥ —34 isinjective and E’ has at least two elements, then g is surjective.

ProoF. (2.8.1) follows from (2.3). (2.8.2) is a consequence of (2.7). Finally
(2.8.3) can be deduced from [8], (2.13), because with the notations of this example
{=1}) and {<=i} are perfect topogenous structures on E’. |}

Let us note that from the perfect topogenous g-mapping 3 of examples [8],
(2.5.1), (2.5.2) we cannot make a perfect topogenous g-family {3}, since 3C3°
does not hold, consequently in such a direction the converse of (2.8.1) cannot be
proved. But in general, we should vainly look for a perfect topogenous g-family,
which cannot be deduced from some topology on E’; it will be shown that such
a family does not exist (see (2.10)).

In the following statement we shall use the notion of a round filter, the defini-
tion of which can be found e.g. in [7] or [3].

(2.9) Theorem 3={3} is a perfect topogenous g-family iff a topology 7 on E,
and for any x'€E’, a filter {(x") in E can be chosen such that

(2.9.1) {(x’) is F-round for any x’€E’, in particular §(g(x)) is the F-neigh-
bourhood filter of the point xcE,

and

(2.9.10) 30) =25, 3(4)= N () for 0% A CE.

'€ A’

In this case we have T=9,;. For a topology 7' on E’ the equality 3=35.
holds iff for any x'€E’ the filter {(x") agrees with the filter generated by the inverse
images g~ '(V') of 7 '-neighbourhoods V' of x’.

PrOOF. Supposing that 3 is a perfect topogenous g-family, with the choice
f(x)=3(x") (2.9.2) is true (see [8], (1.6)). If we put T= 7,3, then 7 is a topology
on E (cf. (2.5.4)). 3(x") is F-round, because X¢3(x") and 3C3* imply Ye3(x")
and Xe€3(g(Y)) for a set YCE, thatis Y<_ X. Finally x<,V, iff Ve3g(x)),)
thus (2.9.1) is satisfied.
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Conversely, (2.9.1)—(2.92) implies |8] (1.6.1)—(1.62), therefore 3 is a perfect
topogenous g-mapping. We have to prove 3C3* in accordance with axiom (F2).
If Xe3(A’) for aset A"=0, then x’€¢A” implies the existence of a set Y, .cf(x")
such that Y,, <X, where 7={<}. From the perfectness of < weget Y= |J Y, <JX,

x'EA
and YOY,.€i(x") for every x'€A4’, thus Y€3(A). At the same time, for x€Y,
the set X is a J-neighbourhood of x, consequently by (2.9.1) X¢€f(g(x)), so that
X¢3(g(Y)). The first part of the theorem is proved.

By (2.9.2) 3(x")=7(x") for any x’€E’, thus owing to (2.9.1) %5 is obviously
identical with 7. Finally let 7 '={<"} be a topology on E’ such that g(E)
is J'-dense. Then we have 3.(x)={XCE:g W (V)cX, X<V} If 3=3<»
then f(x")=3(x")=3.(x") for every x'€E’. Conversely, 3. is perfect (see [8],
(2.3.2)), henceif 3. (x") =f(x") for any x€E’, then 3. (4") = ) 3(x)= N f(x)=
=3(4"). 1 x' €A’ XEA

For the formulation of the following corollary of (2.9) we need to use the notion
of a monotone mapping h belonging to a given family of filters in E, and the synto-
pogenous structure i(%), which was defined e.g. in [7] (and also in [3], (0.4), th. 3.1)

(2.10) Corollary. Let 3={3} be a perfect topogenous g-family, T=9, and
let h denote the monotone mapping belonging to the filters 3(x") (X’€E’). Then
3=3n)>-

ProOOF. By (2.9) the conditions of [7], (2.3) are fulfilled, thus the filter generated
by the inverse images of /(7 )P-neighbourhoods of x” agrees with the filter 3(x”)
for every x’cE’. |}

3. Applications in extension theory

In the first part of this chapter a generalization of th. (6.1.2) of [2] will be given
with a determination of a class of syntopogenous structures on E’, in which the
structure h(%) studied in ch. 1—2. of [7] is the coarsest one.

First of all let us consider the following construction:

(3.1) Theorem. Let & be a syntopogenous structure on E and 3,=1{3,} be
a topogenous g-family such that &' < %3,. Then we have a syntopogenous g-family
3"=3(% 30) consisting of the topogenous g-mappings 3( <, 3,) defined for every
=c% as follows:

(3.1.1) X€3(=, 30)(A") iff there is VE3,(A") with V<X.

The syntopogenous g-family 3* has the following properties:

(3.1.2) H~&

(3.1.3) 3" <3

(3.1.4) 3*=3, provided 9"=9,3,.

(3.1.5) 3" is finer than every syntopogenous g-family 3, such that %3 K% and
iyt r

~ 1<\’}0'

In view of the last property of 3%, it will be called the fine syntopogenous g-family
corresponding to & and 3,.
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Proor. We prove that 3=3(=, 3,) is a topogenous g-mapping for every =¢.%
(M0): E<E and E€3,(A") implies E€3(4"), i.e. 3(4)#0. If YO X€e3(A"), then
we have a set Ve€3,(4") such that V=X, thus V<Y and Ye€3(4"). (MI): 0<0
and 0€3,(0), therefore 0¢3(0). Conversely, if 0€3(4”), then V<=0 for some
VEzy(A'), but this implies V=0, and owing to property (M1) of 3, we get A"=0.
(M2): If X€3(A4’), then g7 (4")= V=X with a suitable V€3,(4"), hence g~'(4")<
cX. (M3): If A" B’ and X€3(B’), then there is a set VE3,(B")<3,(A4") such that
V<X, from this X€3(4") follows.

Suppose X¢€3(A4”) and Ye3(B). Then V=X and W=<Y for some Vé3,(A4")
and We3,(B’). = and 3, are topogenous, therefore VOIW=X(Y and VIUW=
<=XUY, further VIWE3(A'NB’) and VIJWe3,(4"UB"). This gives the topo-
genity of 3.

Obviously, if <, <€# and <U<C<€c% then 3(<.3)U3(<s3)C
C3(= 30, thus 3* satisfies axiom (Fl). Finally suppose that < is an arbitrary
member of %, and let us choose =69 so that =€ <{, after this let 3 and
3, denote 3(=,3,) and 3(=,3,) respectively. If X€3(4") then V=X for some
VEz(A'). Assume V<Y< W<X. In this case we have Y¢c3,(A4"), and from
'K S, the relation We3z,(g(Y)) follows, hence Xe¢3,(g(Y)). We got 3C35,
i-e. 3* satisfies axiom (F2), too.

Let us show that 3* has the properties listed in (3.1.2)—(3.1.5).

(3.1.2): Put 3=3(=, 3), where < is an arbitrary element of & If A<.B
then Bc3(g(A4)), thus there is a set V€3,(g(4)) such that ¥V<X. But because of
(M2) Acg(g(A))cV, so that 4<B, 1e. <, C=. Conversely, suppose that
<€% and <, €% for which < C<}. If A<B then A<,V <,B for some VCE.
By <%, we have V€3 (g(A)), therefore Be<jy(g(A4)), where 3,=3(<, 3)-
This shows < C <,,,.

(3.1.3): If X€3(A”) for some 3=3(<=, 3), =€% then V=X holds for a set
VéE3,(A”), and since VCX, from (M0) we get X€3,(4").

(3.1.4): Assume that ¥'=9; and X€3,(4’). In view of 3,335 we can choose
a set Ve3y(4") such that Xe3,(g(¥)). But this means V<, X, and because of
our condition we have V=X for some =¢% If 3(=, 3, is denoted by 3, then
we can write X€3(A4"), and obviously 3,< 3"

(3.1.5): Let 3, denote a syntopogenous g-family such that ¥; <% and

t € 3,. Suppose that 3,€ 3, is arbitrary, 3,€3,, for which 3, C33, further <¢%

such that <, C <, finally let us consider 3=3(=, 30). If X€3,(4") then there

exists V€3,(4’) such that X€3,(g(¥)). This means V<, X, consequently V<X.

From 3}<€3, we can deduce V€3,(A4"), thus in accordance with our notations,
this gives X€3(A4"), accordingly 3,3, and in general 3, <3*. |}

(3.2) Theorem. Let & be a syntopogenous structure on E. Suppose that {(x’)
is an S-round filter in E for any Xx'€E’ such that §(g(x)) is the filter of S-neigh-
bourhoods of every point x€E. Then we have a perfect topogenous g-family 34= {30}
determined by

(321) 30 =2 and 3(4)= N () for 0% A C E,

xeAd
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for which =9 . If 3° is the fine syntopogenous g-family corresponding to
S and 3., then denoting by h the monotone mapping belonging to the filters f(x")

(322) 3*’”3;‘(3‘) and 3],{(1):,:30.

(3.2.3) W(¥) is the coarsest of all syntopogenous structures & on E’ such that
g(E) is &’-dense and 3* € 3+ <3

PROOF. Putting 7=5"7, the first part of the theorem can be read from (2.9).

(3.2.2): Supposing <€ and 3=3(=<,3,), we have 3C3<, where <'=
=h(=)€h(S), and at the same time J* <€ 3u). In fact, if X€3(4’), then V=X
for some V€3,(4’). In this case A'ch(V)h(<)"h(X). g '(h(X)c X, since x€E,
Xef(g(x)) gives that X is an $-neighbourhood of x, consequently x€X. This
means X€3..(4"). Conversely, from [7], (2.3) we can deduce that the filter generated
by the inverse images of /(¥)-neighbourhoods of any point x’€E” is exactly f(x”)
hence by (2.9) we have 3js)»=3,. After this the inequality 3, < 3" will be
verified. On the basis of (1.5) and (2.2.3) we can state 3,'.(y,<3;."(y,:3,.(y).,=3.,.
Simultaneously 5‘13*(‘,,)=g“(h(.5"))~.9’ (see (2.6) and |7], (2.3), (1.2)). In view
(3.1.5), from these we get 3, <3".

(3.2.3): Assume that %’ is a syntopogenous structure on E’ such that
3" €3+ <€ 3o. We shall show h(¥)<L¥’. Indeed, suppose that =*=h(<=)?
for some =¢% and let us choose an element <" of %’ such that 3C3. for
3=3(=, 30). Putting <[¢%’, for which <€ <", we can state <*C<;. In fact,
if A’ch(A), h(B)cB’ and A<B, then A€f(x") for x'€A’, thus A€3,(4"), and
consequently B€3(A”). We have a set X' E” such that A" <'X" and g~ '(X")CB.
If A"={Y'<{X’, then for any x’¢Y’ the inequality x"<{X’ holds, therefore
Bog ' (X)€34(x)30(x)=7(x")" This gives Y'Ch(B), accordingly A"<;B’.
We got h(<)C =<;, consequently h(<)ic <i=<{, ie. W(F)<LS'. |

(3.3) Corollary. Under the conditions of (3.2) let g be an injection. Then h(%)
is the coarsest of all syntopogenous structures " on E’ such that (E’, %, g) is an
extension of [E, &) giving the filters {(x"), as trace filters, and &’ induces the fine
syntopogenous g-family corresponding to & and 3.

ProOOF. For such an extension (E’, &, g) by (2.9) we have 3"~ 3+ €34 tp=
=30, thus from (3.1.5) #(¥) <L follows. |}

(3.4) Corollary. ([2], (6.1.2)). Under the conditions of (3.2) let g be an injection,
and $=97 be a topology. Then h(T)’ is the coarsest of those topologies T on
E’ for which (E’, 7', g) is an extension of |E, 7] with the trace filters {(x’).

PrOOF. Denoting by 3" the fine syntopogenous g-family corresponding to
T and 3,, from (3.1.3) 3*<3, follows. But simultaneously ;=7 and
(3.1.5) implies 3,<€ 3", thus 3,=3"* (let us observe that by (3.1.1) 3* consists
of a single g-mapping). Consequently, if 7 is a topology as in the theorem, then
3*=30=3s, therefore h(T)LTI’'. From this (TP LI P=F’ can be
deduced. |}

(3.5) Theorem. Let g be an injection, & be a syntopogenous structure on
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E and 3 be an arbitrary syntopogenous g-family. In order that there exist a synto-
pogenous structure &’ on E’ such that (E’, %', g) is an extension of [E, %] and
3~3s, it is necessary and sufficient that S~,5. In this case % is the finest
of all syntopogenous structures on E’ with these properties.

Proor. If (E’, %', g) is an extension of [E, ] such that 3~ 3., then
S~g (S )=S3,,~F3 (see (2.6)). Conversely, suppose S~F3, and let &*
denote the syntopogenous srtructure %3 on E’. Then g(E) is &*-dense, 3=3y,
and S~ 3= 3,.,=g (), finally &* is the finest of all syntopogenous struc-
tures on E’ inducing 3 (see (2.3) and (2.6)). |

The knowledges concerning extensions providing a prescribed family of trace
filters can be completed as follows:

(3.6) Theorem. Under the conditions of (3.2) let g be an injection. Then 3
is the finest of all syntopogenous structures &’ on E’ such that (E’, ', g) is an
extension of [E, ) with the filters {(x’), as trace filters.

PrOOF. Put ¥*=94. Then (E’, " g) is in fact an extension of [E, ¥]
(see (3.1.2) and (3.5)). 34+=3*, therefore by (3.1.3) Jyeer=3"? €3, at the
same time (3.2.3) implies 4 (¥)<€.%*. From this and form (3.2.2) we can deduce
3o=3nw)r» €3+, s0 that Jyeee=3,. In view of (2.9) this means that the exten-
sion (E’, &7, g) gives the filters f(x"), as trace filters. Suppose that the extension
(E’, &', g) of [E, %] has the same trace filters f(x") (i.e. 3s+»=3,). Then putting
3=3s, we have ¥~%; and 3F'=3,.<€3y (cf. (3.5). From the fineness of
3" (see (3.1.5) the inequality 3<3* follows, but owing to (2.3) this gives
<’ 1

Remark. This finest extension described in the theorem can be constructed in
another way (see [3], ch. 0 (p. 60), (0.6) and th. 2.2).

On the basis of the statements of [7], (2.1) and (2.4) we can verify that for the
existence of an extension (E’, #’, g) of the syntopogenous space [E, %] having
a prescribed family {j(x"): x’€E’"} of trace filters, it is necessary and sufficient that
any filter f(x’) be S-round, and j(g(x)) be the filter of -neighbourhoods of
every point x€E. In the last part of the chapter this result will be generalized.

For an arbitrary syntopogenous space [X, %], we shall say that %(A4)=
={VcX: A<V for some =¢c%} is the S-neighbourhood filter of P+#AcCX.
If (E,%’,g) is an extension of the syntopogenous space [E, %], the system
{g1(F(4"): 0£A'E"} will be called the full system of trace filters of this ex-
tension, where g~%'(4)) consists of the inverse image g~ (V') of members
V' of &(A’).

(3.7) Lemma. Let (E’, &', g) be an extension of the syntopogenous space
[E, #). Then the full system of trace filters of this extension is identical with
{3 (A): 0#A’CE’}, where ¥"*={<'}.

PrOOF. It is clear by the definition and [8], (2.1)—(2.2). |

(3.8) Theorem. Let g be an injection, and & be a syntopogenous structure
on E. Let us consider a filter {(A") in E for any 0=£A"CE’. Then the following
Statements are equivalent:
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(3.8.1) There exists an extension (E’, &', g) of [E, ] such that {i(A"): 0#A'CE’}
is the full system of trace filters of this extension.

(3.8.2) {(A") is an F-round filter in E for any 0+=A’CE’, in particular (g(A4))=
=%(A) for every O=ACE, finally, if A’, B, are non empty subsets of
E’, then {(A)N{(B")=f(4"UB’).

ProOOF. (3.8.1)=(3.8.2): Suppose X€f(A"). Then for some <'€%” we have
A<V’ and g7 (V)=X. If <€, <’C <2® and <€& suchthat g7 (<))C <
then A’ </W’ <[V’ for a suitable W’, and with the notation g~ '(W’)=Y we get
Yej(A’) and Y<X, therefore f(4") is -round. We know g ' (¥")~%, thus
XeF(A) ff E —g(E—X)¢%(g(A)). g is an injection, thus from X=
=g Y(E’—g(E—X)) the equality f(g(4))=%(A) follows. Obviously f(4"UB")c
ci(A)N{(B), and if X=g '(V")=g~Y(W’), where A" <(V’, B’ <\W’ (<], <€),
then, for <{U<iC<'€¥’, we have A'UB'<'V'UW’, thus g~ }{(V'UW’)=
=g 1 (V)Ug '(W')=X shows that f(4"){(B")cf(4’UB’) is also true.

(3.8.2)=(3.8.1): First of all we prove that putting 3,(V)=2F, 3,(4)={(4")
0=£A'CE’), 39=1{30} is a topogenous g-family, for which ¥'=%; holds. In
fact, 3, clearly satisfies axioms (MO) and (MI). If A’CB’, then 3¢(B")=
=30(A"UB")=3,(4")3¢(B")=3,(A4"), thus (M3) is also fulfilled. For the verifica-
tion of (M2) let us suppose X€3,(A4). Then x€E, g(x)€A’ implies X€34(g(x))=
=%(x) (see (M3)), hence xcX. This means g~ '(4)cX. The topogenity of
3, can be deduced from [8], (1.3). One can see that 3,C3i. In fact, if X€3,(4"),
then from the roundness of 3,(4") we get a set Y€3,(4") such that Y<JX, where
<€% But this implies X€33(4"), since X€&(Y)=3,(g(Y)). Finally suppose
S'={=,). Then A=<,B iff B€F(A)=3,(g(A4)), and this is equivalent to 4 <3 B.
This shows ¥'=9,;,.

From here we sgall have an easy job, namely assume that 3* is the fine synto-
pogenous g-family corresponding to & and J3,. Then from ¥'=9%; we get
3"=3, (see (3.1.4)). (3.1.2) and (3.5) show that there is an extension (E’, &', g)
of [E, &] such that 3*~ 3y . This implies Js«=3%.=3*"=3,, which means
that {30(4"): 02 A'CE'}={{(A"): 0£A’CE"} is the full system of trace filters
of the extension in question (see lemma (3.7)). |}
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