On the characterization of means defined
on a linear space

By ZSOLT PALES (Debrecen)

Preliminaires

In 1931 KoLMoGOROV [6], NAGUMO [7] and Dt ettt [] cave a characteriza-
tion of the quasiarithmetic means. KOLMOGOROV obtained the following.

Theorem A. A discrete symmetric mean (defined on an interval IS R)
is quasiarithmetic if and only if it is a continuous and a strictly monotonous function
and associative

(Throughout this section we use the terminology of [8] )

Several generalizations of the quasiarithmetic means were born in the last
years. (See BAJRAKTAREVIC [2], DAROCZY [3], PALES [8].) One of them is the concept
of quasideviation means introduced by the author in [8]. In [8] the following result
is proved:

Theorem B. A discrete symmetric mean (defined on a real open interval) is
a quasideviation mean if and only if it is infinitesimal and strongly intern.

In the characterization of the quasiarithmetic means and quasideviation means
the concept of associativity and strongly internity play the most important roles.
There is a natural way to define the discrete means, the associative means and the
strongly intern means on linear spaces. (See Definitions 1, 2 and 3, respectively.)
(But our concept of mean is different from the terminology of HiLLE [5].) This
involves the following problem: What are the associative and the strongly intern
discrete symmetric means on linear spaces?

Our discussion is restricted to the case when the domain of the given discrete
symmetric mean is a convex set having at least two dimensions. (If the domain
has only one dimension then the given mean may be regarded as a mean defined
on a real interval.)

In this article completely solve the above-mentioned problem stating its solution
in Theorems 1, 2 and 3.

1. Notations and basic concepts

Throughout this paper R, R., N, X, and D denote the set of real numbers,
the set of positive real numbers, the set of natural numbers, a real linear space,
and a fixed convex subset of X, respectively.

2.
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If x, ..., x,€X, then ]x,, ..., x,[ denotes the set

{Zﬂl AiXi|lq = 0, Zu' A= 1}.
i=1 i=1
If x:(xl’ vy x,.)EX‘, y:(}-“ ceny }’,,,)EX" then let

(x, y) = (xls cees Xps V15 vy ym)‘
Let further

9 := 9(D) := “Ql D",

Definition 1. The function M: 2 —~D is called a symmetric discrete mean
(on D) if it has the following properties:

{1} For x={(x;, ... x)eD"cD,
M(X)EVys oo X0;

(i) For n€N, the function M,:=M|, is a symmetric function of its
variables.

Definition 2. The discrete symmetric mean M: %D is associative if, for
leDil3 very anDkn’

M(xl'! okt xu) = M(M(xl)s D, M(xl); et ] M(xn)! pudy M(xn))
— — e ———
*l kn
Definition 3. The discrete symmetric mean M: 2D is strongly intern if,

for Xy, ..., X,€2,
M(xb wesy xn)E]M(xl)r sy M(xn)[°

Remarks. (1) Using property (i) it is easy to check that an associative discrete
symmetric mean is strongly intern.

(2) If X=R and D is a real interval then the Definitions 1, 2 and 3 give the
corresponding concepts on the real line (introduced in [8]).

2. Strongly intern means

In this section and in the next section we shall assume that the set D has at
least three points which are not on the same line.

Theorem 1. A discrete symmetric mean M: % —~D s strongly intern if and only
if there exists a function f: D—~R, such that

Z";f(xi)xf
(2.1) M(%yy ooy X)) = e =t M (X5 2eey %)

3 f(x)

fm]

for x4, ..., x,€ D, n€N.
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Proor. (i) First we prove that the mean M, defined in (2.1) is strongly intern
for each function f: D—-R,.
Let

xl — (xlls seey xul)GDki,

.‘!'C,, = (Xp1y co0s Xk, JED*n
(kyy ...y ky, nEN). Then

n k;
v _Zf(xu)xu
22) RO (o = s £
Zf(xu)
i=1j=1
n k;
2 [Z f(xij)] M, (x) =
== J=: X, = .g;liMf(xl)
'é; ;é; f(xu) =
ky
2 f(xy) ,,
where 4;= :=l*. . It is easy to see that 4, ..., 2,>0 and iZA,:l. Thus
hz;jg;f(xu)

(2.2) implies
My(Xy, ooy X)EIM p(Xy), ..oy Mp(X)[
Hence M, is strongly intern.
(ii) To prove that every strongly intern mean M has the representation (2.1)

let x,€D be an arbitrary but fixed point. If x,#x€D then M(x,, x) lies on the
open segment ]x,, x[ i.e. there exists a unique value 0<Zi,<1 such that

(2.3) M(xg, X) = A xo+(1—4)x.
Let f: D—~R, be defined as

1 if x=x,,
(2.4) fx) i Ai—l it x = x,.
Then, by (2.3), we have .
S 1
=) M D)= o510 = TG T )

Let, for neN, S, be the statement that

(26) M(xl,..., x,,) = Mf(xl, sasy x,,)
for all x,, ..., x,€D.

First we show that S, is valid. Let x,, x,€ D be arbitrary points. If x;=x,,
X;=2X, O X,=Xx, then there is nothing to prove. Thus we may assume that x,, x;, X,
are pairwise distinct points. We shall distinguish two cases:
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Case I. x,, x,, x, are noncollinear points. Then x,, x5, M(x,, x,), M(x,, X;)
are pairwise distinct and noncollinear points too. Thus the segments

IM(xo, x1), X[ and  ]M(xy, x2), X[
have at most one common point. The strong internity of M and M, and (2.5)
imply
M (xy, Xy, X2)E€IM (X9, X1), X[ VIM (X, Xy), X4[ =

i ]M_{(xm xl)! .\‘2[ m ]MJ‘(-YIJ) xﬂ)s xI[BMf(-rl]a X1s x!)-
Therefore
2.7) M(xg, Xy, X3) = M (Xy, Xy, X).

If M(xy, X)) #Mg(xy, x;) then JM(xy, x,), x[ and M (x;, xp), x,[ are disjoint
open segments. But, using (2.7), we have

IM(xy, x3), xol€M(xy, Xy, X3) = M, (xg, X4, xz)E]Mf(xla Xa), Xol-

This contradiction shows that

M(xy,x5) = Mp(x;, x3)
in Case I.

Case Il. x,, x;, x are collinear points. Then, by our assumptions on D,
there exists x3€D such that x,, x,, x,, X3 are noncollinear points. It is easy to
check that the points

M (xy, x1), M(x3, x5), M(xy,x5), M(x,, X3)
are also noncollinear. Consequently the segments
]M(xﬂn xl)! M(xz; x:!)[ and ]M(xos xz)' M(xl; x:l)[

have at most one common point. Using the strong internity of M and M/, (2.5),
and Case I we obtain
M (xq, X1, X2, X3)€

EIM (xg, X1), M (X2, X)[(N]IM (xg, X3), M (xy, X3)[ =
=M (xo, X1), M (X2, Xa)[NIM (X, X9), M (X, X3)[€

er(xne Xy, X3, X3).
Thus

(2.8) M(xy, X1, X3, X3) = Mf(xﬂls X1, Xg, X3g).
If M(xy, x5) # M (x,, x,), then
IM (xy, x9), M(xy, x3)[ and IM ;(xy, X3), M (x, X5)[

are disjoint open segments since M (X, X3) =M {x,, X;).



On the characterization of means defined on a linear space 23

On the other hand, (2.8) implies
IM(xy, x3), M(X, X)[€M (xo, Xy, X3, X3) =
=M (Xo, Xy, X9, X3)€E]M (X1, Xy), M (xo, x5)[
This contradiction completes the proof of S,.

To show that S, (n=2) is also valid we use induction. Let n=>2 and assume
that S, is valid for n=k€N. Let x,, ..., x,€D. If x,=...=x, then (2.6) is obvio
usly satisfied. Thus, without loss of the generality, we may assume that x,_,#x,.

If M(x,_;, x)=M(x;, ..., x,_g) then, by S,_, and S;, we have

MR s X)) = MO8, s Xocads MO8 5. 2 )] =
~ ]Mf(xls oy n—:!)s Mf(xn—ls xn)[ o= {Mf(xle aasy xn)}

i.e. (2.6) is satisfied.

If M(x,_y, x,)#M(x,, ..., x,_s) then choose x,,,¢D such that the point
systems

Xn=1s Xns Xp41
and

(29) M(xly seey xn—z): M(-xu-la xn)’ Xn+1

form real triangles.
Then

M(xn—la xn)! M(xn—l-v x,|+1), M(xn' xn+1)

are noncollinear points. Thus the intersection
B = MU, i X Xaca e M0 XD
P UM s g )y M XY
OIM (X1, ooy Xpmgy Xna1)y M (X1, X,
consists of a single element which is, by the strong internity of M,
1 Py, T A

Using S,_, and S, and the strong internity of M it can easily be verified that
M (X, ..., Xy41) also belongs to H. Therefore

M(xy, .., Xpu1) = Mp(Xy, s Xpi1)-
Then the intersection of the open segments
IM(xy, ..o %), Xpeal and M, (xy, ...y X)), Xpqal
is nonvoid. But their endpoint x,,, is common, consequently
MR s %) Xy, s X %

are collinear points. Applying S,_. and S, it is easy to check that M(x,, ..., x,)
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and M,(x,, ..., x,) belong to the segment
]M(xls o xn-z)! M(xn—l) xn)['
The assumption M (xy, ..., X,)# M ((x,, ..., x,) would imply that (2.9) is a collinear

point system. Hence (2.6) is satisfied.
3. Associative means

Theorem 2. A discrete symmetric mean M: 2 —D is associative if and only if
there exists a function f: D—~R, satisfying the functional equation

(3.1 2 (My(x, y) =fX)+f(»), x, yeD
and
(3.2) M=M,

We prove Theorem 2 in three steps.

Lemma 1. If M: 2D is an associative discrete symmetric mean then there
exists a function f: D—~R such that (3.1) and (3.2) are fulfilled.

Proor. If M is associative then it is strongly intern. Applying Theorem 1
we see that there exists a function f: D—R, such that (3.2) is valid. To prove that
f satisfies (3.1) let x, yeD be arbitrary. Choose z€D such that z# M (x, y)=:p.
Using the associativity of M=M, we easily get

3.3) Mf(x! »z)= Mj(zu! iy 2) =i V.

(3.3) implies the following equations:

(3.4) SGx+fy+f(2)z = (f)+/)+S(2)v
and

(3.5) AW n+f(2)z = (2f(W+S(2)v.

From (3.4) and (3.5) it follows that
JE)x+f)y—=2f(Wu = (f(x)+5) -2 ().
_ S&)x+/»)y
. S)+fy
thus we obtain

(3.6) (f)+£()—2f () (u—v) = 0.

The strong internity of M, and z#M/(x, ) imply that ps=v. Consequently
it follows from (3.6) that f satisfies (3.1).

Lemma 2. /f the function f: DR, satisfies the functional equation (3.1) then
3.7 nf(My(x1, . %)) = f() + ... +£(x,)
Jor all neN and x,, ..., x,€D.

Since
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PrROOF. We prove (3.7) using a Cauchy-type induction i.e. first we show that
(3.7) is valid for n=2% keN.

For n=29 and n=2!(3.7) is obvious. Assume that (3.7) is valid for n=2, ..., 2*
and let X, ..., x;«1€ D be arbitrary points. Denote, for the sake of brevity,

X =Ry wditin)y X imlBwaXiml X sl seis Xanit);

Then
Z fedxit 22 o Zf(xa MY+ 3 )M ()
Mf(x) ak 2!;...1 = ‘;4-:1 =
1+ 3 fx) 3 a3 e
i= 2"+l i=1 i=2%41
2 2"f(M; (X)) M, () + 24/ (M, (x)M;(x") ; "

T @R M) PRIk

us

2H1f(Mf(x)) = zHlf(Mf(Mf(x') Mf(-x”))) =

= 2X/(M,(x))+2* f(M;(x")) = Zf(x£)+ 2 f(xi) = Z S

To prove (3.7) in the general case let n€N and x, ..., x,,ED be arbitrary. Choose
k€N such that 2*=n and let

y = x,,.,.l == xzk = Mf(x_l, T xn).
Then the strong internity of M, gives
Mf(‘xl? Y xll) — Mf(xl! “eey xz") == .

nf (My(x15 ..cr %)) = 2/ (M y (%1, ..., X9)+(n—=2% f(p) =
= S/ +0-29/0) = 3 f(x).

which was to be proved.

Lemma 3. If f: D—~R_ satisfies the functional equation (3.7) for all neN
and Xy, ..., x,€D then M, is an associative mean.

Thus

PrROOF. Let x;=(xi, ..., Xa)EDY, i=1,...,n be arbitrary. Then

k; n k;
P4 f(xu) Xij ig; [j; f(-"u)] M, (x;)

i=1 j=1
Mf(xl, tasy x,,)= . =

2", Zl'f(xu) 'é; _,é; S(xip)

i=1j=1

3 ke f (M () M (x)

= = MJ-(MI(XI), seey Mf(xl), “euy M;(x,,), saey Mf(xn))'
é; ki /(M (x)) ky Ky

This completes the proof of Theorem 2.
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Remarks. (1) The functional equation (3.1) was studied in the real case (when
D is a real interval) in AczEL [1]. AcziEL proved that every continuous solution of
(3.1) has the form
f(x) =1/(ax+p), x€D(S R)
where a, f€R.

(2) We have proved a bit more since we used only that M is strongly intern
and M=M, satisfies (3.3) for x, y, z€D.

Theorem 3. Let X be an (at least two dimensional) topological vector space
and let D be a convex subset of X such that there exists an interior point of D.
Let M: %D be a discrete symmetric mean. Suppose that

(x, y)—=M(x,p), (x,y)eD?

is a continuous function. Then M is associative if and only if there exist a continuous
linear functional | and a real constant ¢ such that M =M, where, for x€D,

(3.8) £ = 1/(1(x)+¢)
and
(3.9) [(x)+¢c=0.

Proor. By Theorem 2 it is enough to prove that
(i) the continuity of

(3.10) (x, y)—= M/ (x,y), (x,y)eD?

implies that f is continuous;

(i) every continuous solution of (3.1) has the form (3.8) where / is a continuous
linear functional on X and c€R with (3.9).

(i) Let x,€D and suppose that f is not continuous at x,. Then there exists
a sequence {x,} such that x,—x, and f(x,) converges to a limit point different
from f(x,) in the interval [0, ==]. Let x,#x€D. Then, by the continuity of (3.10),
(3.11) ,,]i'll M(x,, x) = M(x,, X).
On the other hand, by the properties of {f(x,)}, (3.11) cannot be valid.

(i) We show that the function g:=1/f satisfies the Jensen functional equation
on D. This gives the representation (3.8) for f. Let x, yéD. Applying Lemma 2

we have that
(k+l)f(M,(x, s X Vo i s )= ML)

k 1
i.c.
(K )x+()y) _ kK T
I+ 1) )_k+1f(x)+k—+;f(})

for each k, IEN. It follows from the continuity of f that

y(ztwon) | 2

SR
W +w/() ) itu J»

+

f0+5

for every 4, u=0.
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Let A=2%/f(x), u=u"/f(»). Then

Ax+u*y A* w
f[ ¥4t A S it
JS&x) ) xS0
i.e.
o 1 u* 1
(3‘]2) f i*x+,u y = )-*‘f‘ﬂ* f(x)+},*+p* f(}‘)
[ A+t ]

for 2%, u*=0.
(3.12) means that g=1/f satisfies the Jensen functional equation on D. Thus
the proof is complete.

Corollary. Let X be an (at least two dimensional) topological vector space.
Let, further, M: Z(X)—~X be an associative discrete mean. Suppose that

(x, )= M(x,y), (x,y)eD?
is a continuous function Then M is the arithmetic mean on X.

PrROOF. By Theorem 3, M= where f has the form (3.8). Since D=X,
(3.9) can be satisfied if and only if l{r) =0. Therefore f=1/c and M is the arith-
metic mean on X.
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