Notes on tensorial connections

By J. SZILASI (Debrecen)
To professor L. Tamdssy on his 60th birthday

1. Introduction. Bompiani’s tensorial connections have been discussed by many
authors up to now. As for the original formulation of the question see BoMPIANI [1].
Earlier mainly Italian geometers investigated the problem (a good survey of their
more important papers is accessible in the bibliography of [2]) but later many others
joined in these investigations. Since the 60* professor TAMAssy has published a lot
of interesting papers in this field (see e.g. [7], [8], [9))-

In most of the indicated works the local foundations of the theory were treated
by local means, of course. In these notes — which constitute a part of the author’s
thesis ““Horizontal maps and tensorial connections™ (Debrecen, 1981) — we are going
to discuss the tensorial connections in a little more general setting and from vector
bundle viewpoint. The “more generality” essentially means two things here. Firstly,
the rank of the considered vector bundles differs from the dimension of the base
manifold, in contrast with the classical theory. Secondly, we distinguish general,
homogeneous and linear tensorial connections. (The exact meaning of these attributes
will be clarified soon.)

The organization of our paper is the following. Section 2 is devoted to the
necessary preparations. In Section 3 a local description of a tensor bundle is
discussed. Section 4 contains the definitions of the different tensorial connections
and the characterizations of their decomposability. The paper finishes with an
observation on the lift of a vector field to tensor bundles (Section 5).

2. Preliminaries. Our basic work of reference is the monograph [4], we follow
its notations, terminology and conventions as closely as feasible. So manifolds
are always finite dimensional, Hausdorff, 2nd countable and smooth. A differentiable
map — or simply a map—means a smooth map unless otherwise stated. If M is
a manifold, then C=(M) is the ring of smooth functions M —~R. A vector bundle
over the base manifold B is denoted by ¢=(E, n, B, F). The fixed vector space
F is the typical fiber while the manifold E is the total space of &.n: E—~B is the
projection map, F,=n"'(x) is the fiber at x¢B. In particular, the tangent bundle
of a manifold M is written as ty,=(TM, np, M, R™) (m=dim M); its fibers
are the tangent spaces T,(M) (xéeM). The C=(B)-module of the cross-sections
in & is denoted by Sec &, in particular the module of vector fields on M is
X(M):=Sec 1y;. AP(B: &) denotes the C=(B)-module of the &-valued p-forms
on B(p=0, A%B; &):=Sec ¢);

i(X): A?(B; &) -~ A*"1(B; &) (p=1, XcX(B))
is the substitution operator ([4], Vol. 2, pp. 304—306).
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Let the open set Uc B be a trivializing neighbourhood for ¢ with the trivializing
map Yy: UXF—-n"'(U). Then the system of functions

] {x‘ = ulon ==L .un
() y* = "opryoyp! (@=1,...7)
— where {u'} is a local coordinate systemon U and {/*} is a basis of the conjugate
space L(F) — is a local coordinate system over n~'(U).

Consider the short exact sequence of vector bundles
@) 0 = Fte 1525 2*(zp) =0
(cf. [4], Vol. 2, p. 335), where V,=(VE, ny, E, F), VE:= U Ker (dn), is the vertical

subbundle of tg, i isthe inclusion map, n*(75) is the pull back of tgover = and
dr|r g:=(dr),. If the strong bundle map H: n*(tg) ~tx is a splirting of (2) then

3) P = (@)™ 7 (18) ~ 15

is called the horizontal lift induced by H, while the vector ficld

4) X*: z€E— X"(2) := I} [X(n(2))], Xe€X(B)

is the so-called horizontal lift of X (evidently, X"€ X, (E):=Sec Im H);

(5) h:= Hodr and v:=1—h (i := identity map)

are the horizontal and the vertical projection belonging to H, respectively;
(6) K := aov

is called Dombrowski-map (o denotes the canonical bundle map V;—¢&, see e.g.
[4], Vol. 1, p. 291), finally we say that H satisfies the homogeneity condition, if

(M vt€R: hody, = duoh (y,: E - E, z+— t2).

(For a detailed treatment of these important constructions see e.g. the author’s
Thesis.)

Now the general connection V:Sec &—~A'(B:; &) induced by the splitting
H is defined by

(8) V: g€Sec & — Vo := Koda€ AV (B; £).

We speak about linear connection if V is induced by such a splitting of (2) which
satisfies the homogeneity condition. We get an “intermediate class” between the
general connections and the linear ones assuming the following:

(i) H is only a continuous splitting of (2).
(ii) The horizontal projection given by (5) is smooth over TE, E:= | | (F\{0)),

xcB
but it is not differentiable on the null section.
(iii) The homogeneity condition (7) is satisfied.
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In this case the map (8) is called a homogeneous connection induced by H.
— If V:Sec&—~A'(B; &) is a connection then the maps Vy:=i(X)oV: Secé—~
—~Sec £ (X€X(B)) are the covariant derivatives by X with respect to V.

Fixing the local coordinate system (1), a smooth splitting H of (2) can be
described locally with the help of some (unique, smooth) functions I'f: n~'(U)—~R,
they are called connection parameters. It is known that in the linear case the the
restricted functions I}|p_ are linear, namely

ory
Iy = y*([{pom), TIip: U—~R, xHW(Z), z = n(x);

while in the homogeneous case the I'f|g_-s are only homogeneous.

3. Local coordinate systems on tensor bundles. From now on ¢=(E, x, B, F)
and n=(E’,n’, B, H) will denote fixed vector bundles of rank r and s resp. over
the n-dimensional base manifold B. ¢®@n=(E, &, B, F® H) is their tensor product
and &*=(E*, n*, B, F*) is the dual bundle of &. Throughout our following dis-
CHERHON ‘We THE mdichE 38 £ A& o= o B 1L i F A e o T g TS
Einstein’s summation convention is applied accordingly. We can choose such an
open set Uc B which is a trivializing neighbourhood for &, n and ¢®n simul-
taneously. Denoting the corresponding trivializing maps by ¥}, ¥} and ¥, resp.,
consider the maps

Yo, F = F., a—yyp.(a) = yy(x a);
Vo<t H—=H,, b—yj (b):=yi(x,b);
Vv FOH - F.@H,, a®bw— yy(x, a®b).

By the construction of {®n we can assume that y . is the tensor product of the
linear maps Y}, . and ¥} ., that is YxeU: Yy, =¥ ®YE .. On the analogy
of (1), the system of functions

9) ¥ = toR, 2*:=PF@f*oprioyy?

constitutes a local coordinate system over 7 '(U). (In (9) we kept the notations
of (1) with the additional {f*} which is a fixed basis of the conjugate space L(H).)
A simple but very useful observation is given in

~ Proposition 1. The restrictions of the functions z**: 7~ (U)—~R to the fibers
F..=F,.®@H, (xcU) are decomposable elements of the conjugate space L(F,® H,).

Proor. It is an elementary fact (see e.g. [3], p. 36) that there exists a canonical
linear isomorphism between the conjugate spaces L(F,® H,) and L(F,)®L(H,)
so that we can identify them. Thus it is not meaningless to speak about decomposa-
bility in the Proposition. Since the maps Y ., ¥i.x are linear isomorphisms
their tensor product yields the linear isomorphism y} @y} ,: FQ H— F,® H,.
Dualizing, we obtain then isomorphism

(W @Y} D% L(F,®@H,)—~ L(F®H)
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or — what is the same — the isomorphism

Wb,0* @Wi,»)*: LIF)®L(H)= L(F)®L(H).

Let {a,} and {b;} be the dual basis of {/*} and {f*} resp. Then
(Vv a,@b) =y} (a) @Y} (b)) is a basis of F,®H, and this basis is consti-
tuted by decomposable tensors. If z8F:=zP¥ o, , then

2 (Yu,<(a,®b))) := P @ opryoyg|p.en, (Yu(x, a,®@b))) =
= IP®f"(a,@b,) = I"(a,) f*(b;) = 6404,

therefore the functions z’f¢L(F,® H)=L(F,)®L(H,) constitute the dual of the
basis {Jy «(a,) @Y{, «(b;)} from which the Proposition is immediate. [}

Corollary. {®@n has such a framing over U which is constituted by de-
composable sections, that is there are cross-sections e,: U—~E, g;: U—~E" such that
yxeU: {e,(x)®g,(x)} is a basis of F.®@H,.

ProoF. Indeed, consider those mappings U--E which assign to each xeU
the vectors of the dual basis of z%;. |}

Remarks.

1) The framing in question is called induced by the local coordinate system (9).
In particular, we can consider the framing induced by (1).

2) Of course, a decomposable section of Sec(¢®@n) has the form @1t (o¢Secé,
t€Secn). The set of these sections will be denoted by Sec,((®#n) in the
next following considerations. We recall that the map J:0®t—~7 (6 ®1),
T (c@1)(x):=0(x)®@1(x) 1s a module isomorphism between Sec®Secn
and Sec(¢®n) ([4], Vol. 1, p. 80), in the sequel we identify these modules with
the help of 7.

3) In the case of the dual bundle &* — according to (1) — we fix the local coordinate
system

(1) ¥ = dlon*, y, 1= a,oprsoPg’.
(1) and (1") yields on @#=)(U) the local coordinate system
9) ¥ =ulom, z5=1QazopryoPy'.

(The projection and the trivializing map for {®¢&* are also denoted by @ and
Yy respectively. Of course, the Proposition holds for the functions zj similarly.)

4. Tensorial connections and their decomposability.

Definition. A general, homogeneous, and linear connection over the tensor
bundle {®n 1is called a general, homogeneous and linear tensorial connection,
respectively. The general tensorial connectlon V: Sec (ﬁ@q)—-Al(B E@n) s

called decomposable to the general connections V Secé ~A'(B;¢), V Secn —~AY(B;n)
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over Sec,(E®@n) if
1 2
(10) voeSec &, 1€Secn: V(e®1) = VoR1t+0®@ V1,

where e.g. [(Vl’a @1)(x)](v) :=($l’a)_r( v)@1t(x) (xEB, vET,B).

Remarks.

1) It will be seen soon that these concepts of “tensorial connections’ are immediate
generalizations of Bompiani’s ideas (in the classical theory ¢=n=15 or {=1g,
n=tp). For the sake of simplicity we omit the several-factor tensor products.

2) The general construction of the operation ® can be found in [4], Vol. II p.
314. — It is easy to see that the condition of decomposability (10) holds iff

VX€X(B), o€Secé, 1€Secn:

1 2
(11) V(e ®@1) = Vyo@14+0@Vy1.

3) In the case of linear tensorial connections we can speak about decomposibility
over the whole module Sec &® Sec n.
Now, one can easily derive the next

Proposition 2.

(a) Fixing the local coordinate system (9), for each splitting H: *(ty)—~15 there
are unique (smooth) functions I'**: i-(U)—~R (they are the connection para-
meters, cf. section 2) such that at every point zZEm WU) the linear map
Hy:):=H|; s is represented by the matrix

msssasssssssssssssl

of type (n+rs)Xn (where the block E, is the unit matrix of type nXn) with
respect to the basis-pair

).} G, =l

(b) The connection V induced by H is homogeneous or linear iff there are smooth
Sfunctions .
¥4 YWU)NE - R and Ify,: U-~R

resp. such that _
e = zPryf,, or A = 2P%(F{,,07)

B s o
respectively. The local forms of the covariant derivatives by X=X' W with
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respect to V are the following:

, OYaad
X! f;z‘.- +I ‘5101] e,Rg, in the general case,
¢ 014 Y
(lZa—b—C) ch‘ = 1 Xi auf _|_;ﬂ!'(yf1”0!)] ea®gi in the homogeneous case,
;arwﬂ s ;
X oul +I”rflgu] e,Rg, In the linear case
\

(t=1"*e,®g;, e,Rg; is the framing induced by (9)). |

The starting point in the classical theory is just the local form of the covariant
derivatives, see e.g. [9], (1.3) and [7], (11). Combining the formula (12a) with the
formula (11) we have

1 2
Proposition 3. Let V,V,V be general connections on {®@n, & and n respecti-

1 2
vely. V is decomposable to V and V over Secy,(E®@n) iff the relation between the
corresponding connection parameters is the following: for each section

o=ad": U~E t=t'g;: U=EFE’
(13) Ftooc®t = (Il‘:-'oa')r"‘+(lgfor)a'. é
The criterion (13) contains as special cases the “decomposability results”™ of

the classical theory. Namely:

1. Homogeneous case (cf. |8], Th. 2). Now I'*=y*,,z/ Ilfzjl’i’,yf, Ff =;;‘,y‘§
(»f:=)»", the definition of the functions y4:=(a")"(U)—R is the same as in (1)),
so by (13)

1 2
Y AguzP o0 @1 = (¥ yioo) A+ (v, yEoT) 0.

From here a simple calculation yields the local criterion of decomposability

(14) VEu00 ®T = (3400)5} + (¥401) 3.

2. Linear case (cf. e.g. [7], Satz 2). Then I'* *=z%(I'*,,07), 11“}'=(}{‘,on)y{',
2 2
I'{=(I#.on’)y%, therefore by (13) the criterion of decomposability has the form

2P (I, 000 @T= {[(ILfﬁon)yf] oc.r} TZ+{[(F,-J'#OR’))?E]0‘E}O". Hence after some
further calculations we have:

1 g .
(15) Flflaﬂl-l = rilﬂéi'l'r;“é;.
— We note that formula (15) can be derived immediately from the observations
1 1 2 2
v_q_eﬂ=riapea} vﬂg,u:ring£9
Jut At

v a (eﬂ ®g_u) — rtﬂﬂﬂea®g).-

o
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3. The case of the bundle £®E*. Firstly, we remark the following. — Let the
mapping
F.XL(F) ~R, (z,2)+—2z(z) (x€B)
be denoted by f..

Then for each Q¢ A'(B; &), 6€Sec £* we get a I-form f.(Q, 5) on B by the
definition

B. (2, 6)(x,v) := B (R (), 6(x)) (vET,B).

Analogously, B.(c, ) (o€ Sec &, Q¢ A\(B, &*)) is also a I-form on B. Finally we
can form the function
ﬁ#(o" &) B—-R, x— ﬂ*(ﬂ', &)(x) = ﬁx[o(x), &(x)]'

Now let a general connection V be given on &. V induces a general connection Y
on &' by the relation

B. (o, V&)+ﬁ*(VO', &) 1= 0P, (0, &)
where & is the operator of the exterior derivative (cf. [4], Vol. 2, p. 320).

Proposition 4. Let the connection parameters of the general connection
V:Sec E~AYB; &) be the functions I't with respect to (1). Then the connection

parameters 7 i Of the induced connection V: Sec§—~A'(B; &) are characterized
by the relations

(16) 0*(I'1z06) = —0,(I'Fo0)

with respect to the local coordinate system (1) (o€Sec, g€ Sec é‘, ¢* and o, are
the component functions).

J R ¢
PROOF. Let X=X ‘W be a vector field over the trivializing neighbourhood U.

Then at each point xcB
B. (0, V3) (x, X(¥) := B, [0(x), (Vo) (X (x))] =
= B.lo(x), VxO)@®)] := [(Vx D ()] (0 (x)) =

= [X‘(x) [-% (xX)+1(6 (x))] E'“(x)] (0" (x)eg (x)) =

- [X"a'“ [T?"f
au

1© 5‘]] (x).

In the same way,

B. Vo, a)(x, X(x)) = [X o, [3 +F’oa)] (x).

Finally 5(B.(0, 6))X=X(B.(o, 0))=X(0.0%)=X' aa“cr“+ gu: T4

these results we get the relation (16). |

] Combining

3'
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Corollary 1. The relation between the “original’’ connection parameters and the

induced ones is given by
a,a"(f"f,,o&) = —0,0?(I'{400)
and
I*. ,‘13 et rf’p

in the homogeneous and the linear case, respectively. |}

Corollary 2. The general tensorial connection V: Sec (& ®2) -~ AV (B; E®EY)
is decomposable to the connection V:Sec&—~AY(B;&) and the induced one
V: Sec&'—-A‘(B; &) over Sec,(E®E) iff locally the relations

Iige(c®@c*) = (F?oa)aﬂ+(f,-3ca')o‘

hold. In particular, if V and V are linear connections then the criterion of de-
composability can be given as

‘riulﬂh — ri’ﬁési_rr‘ﬂ:a;' l

5. Horizontal lift of vector fields to tensor bundles. The horizontal lift of a vector
field to a tensor bundle was constructed by LEDGER and YANO [5] and in a different
manner (from a principal bundle viewpoint) by Mok [6]. Now we show that using

tensorial connection these lifts can be gained as special cases. — Let X=X ‘W
be again a vector field over the trivializing neighbourhood UcB and V be a ten-
sorial connection on ¢®n with the connection parameters I'**: 7 (U)—-R
induced by a splitting H. An easy calculation shows that the local form of the
horizontal lift of X (which was defined by (4)) can be written as follows:

v = e ().
If V is a linear tensorial connection then
X" = (XioR) [;g—z’” (fi"ﬂ”oﬁ)] 073—
and if in addition V is decomposable then (according to (15))
(17) X" = (X'oR) [,Jz—i—zﬂ(:‘*;,cﬁ)—zw(ﬁi,,oﬁ)],‘—L.
0x 0z

1 B
If {=n, V=V:=V then (17) yields

I — 3 x a = 2 @ — 3
(18) X" = (X'om) (E{.“zﬂ (I fgom)—z ﬂl(ri’ploﬂ)]az—,,l.
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L

e 3
while in the case of n=¢, V=V we get the formula

— a x — X x == a
(19) X' = (X'o7) (ﬁ—zﬁl(ﬂ 5,07 +22 (I'§ 1,,0::)] 5

If an addition &=1tg, then (18) and (19) reduce to the formula (4.4) of [6].
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