On inequalities concerning the permanents
of generalized doubly stochastic matrices

By B. GYIRES (Debrecen)

1. Introduction

a) Let R, denote the n-dimensional real vector space with column vectors
as its elements. Let M denote the set of nn matrices with real elements. Let
A* denote the transpose of 4¢ M. E€M is the unit matrix.

Let Kc M denote the set of matrices, where all row and column sums are 1.
Let HC K be the set of matrices with non-negative elements, ie. the set of so-
called doubly stochastic matrices. Let S,6H be the matrix where all the entries
are 1/n.

The elements of the set K are said to be generalized doubly stochastic matrices.

If A=(ay)eM then the permanent of A4, denoted by Per 4, is defined as
follows:

PCl'A — Z a”l...a,ﬁn,
! M 5

where (i, ..., i,) runs over the full symmetric group.
Let I' be the set of vectors (f,, ..., B,), where the components are non-negative
integers satisfying the conditions

Ogﬁlén (kzl,“-vn)s ﬁl+‘“+ﬁn:n'

Let Cp 5 (A€M denote the matrix, which consists of certain elements of
A4€M. Namely the k-th column of A appears f-times (k=1,...,n) in Cp,_ 4 (A),
where (f,, ..., B,) runs over I.

Let A=UAV* be the polar representation of A€M, where UEM, VEM,
UU*=VV*=E, and A is a diagonal matrix with diagonal elements 2;=0

=1z W) Ustog the Cavschy—Tenes cxpanmon theorem (3], 979), wo. get
e 5 AL e L ()
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b) The following Conjecture is due to VANDER WAERDEN ([3], 586, Conjecture 1):
If A€H, then Per A=n!/n", with equality if and only if 4=S,. This conjecture
was proved by G. P. JEGORITSEV in his paper [2].

In his paper [1] the author proved the following two theorems of Van der
Waerden type, which are not a consequence of the Van der Waerden—Jegoritsev
theorem because HC K.



40 B. Gyires

If (AA*)Y® denotes the only non-negative definite square root of AA*,
then we have the following theorem:

Theorem 1.1. If A€K and if x€R,, yeR,, x+y=1, then
x?Per (AA*)'2+y* Per (A4*A)V*+2xy Per A = n!/n"

with equality if and only if A=S,.
Theorem 1.2. If Ac€K with polar representation A=UNV*, and if

PerCy, 45 (U)PerCy , (V) =0

(Bys oos BDET,

then Per A=n!/n" with equality if and only if A=S,.

In this paper we give extensions of these two theorems.

2. The extension of the first Theorem

Let A=UAV"* be the polar representation of the matrix A€K. Let 7, =0
(k=1, ..., n) be the elements of the diagonal matrix A. Denote by u, and v,
(k=1, ..., n) the k-th column of the matrix U and V, respectively.

As it is known A€K if and only if one of 4, (k=1, ..., n) is equal to 1 and
simultaneously all elements of the corresponding column of U and V are equal
to 1/Vn. In the following, without loss of the generality, let us suppose that i, =1
and thus all elements of «, and v, are 1/Vn.

Let I=r+a=n, where o and r are non-negative integers. Let iy, ..., i
a combination of order r of the elements «+1, ..., n, without repetition and
without permutation, i.e.

e+l=i<..<i,=n.

Let
Ui‘ﬁ?.:, = (Uy...u, Upy- o U;,),
Vi’ﬁ).d, = (1. Uy Vjy...0;),
;nl
)
/l;sf.)...', = ;“;l_l
0) g
A,

Then obviously
AR, =UN, A®, V® M.,

il...lr
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Let

G® (x,y) = 2 {x*Per(4l®, Al )2+

n—uo a+lsip<..<i.=n
"

+ y? Per (A'(:'l*'rA(:l )”2+2xy Per A;‘f_’__,-,},
where x€R,, yER,.

Theorem 2.1. 1. If | =a=n then
(2.1) A9, €K

iy ey

Il. If x€R,, yER,, x+y=1 then
GYi(x, p) = G (x, p)
(r=0,1,...,n—a—1; a=0,1,...,n—1; 1 =a+r <n)
with equality if and only if ,.1=...=4,=0.

PrOOF. ad I. As a consequence of the condition we get that the first element

of the diagonal matrix A ; is equal to I, moreover all elements of the first column

of the matrices U{” ; and V!*; are 1/¥n, ie. (2,1) turned out to be right ([1], 108).
ad II. le\mg lnto account that by the Cauchy—Binet expansion theorem
x2 Per (Ala) A )112+y2 Per (A (x)* ('zl )”2-4-2.1’}’ Per A= P

h---fru [ PR e i1.. 3r+1 ey i1..ire1

S 3 Mt
Byt 4By y,=n ﬁl!"'ﬂa!ﬁ:+l!“‘ﬁ:+r!

UR)+yPer Gy 4, (V2P +
;_ﬂl ;&:Aﬂaed Aﬂn+r7l

+ r*]. ><
§|+..,+§+,”=uﬁl ﬁs'ﬁaﬁl Ba-i-r-i-ll

1. Basr

X [x Per C;

x+r+ lfl
: X [x Per Cyl ﬂ,.'.,”(Uil h-+|)+y Per Cﬂl-uﬁl’d-!d-l ':‘}lr+l)]z
we obtain
(2.2) X Per (Al o A T+ Per (AR, A, ey
+2xyPer AR, ., = xPer (Af2), AP+
+y?Per (Af2 Af . )V2+2xy Per A® ;.

with equality if and only if 4, , =0. Namely if 4; , =0 and since 1,=1, we get
equality if and only if

23)  xPerCpymip, , =n- (Uig4, ) +y Per Coy=iny , =-u-.(Vm )=0

iecip gy

i=0,..,n-1)
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Let r,..,r, and &, ..,5, the components of the vectors u,  , and v,
respectively. Using the notation

Gi(Xy; o s %) = = - T 8
1Sa,<..<a,;Sn
i=1,..n),
we get from (2,3) the system of equations
(2.4) XG(ryy -5 T) + VG (515 -2, 8) =0

Since x+y=1 we may suppose, without loss of the generality, that x:£0. Thus
from (2,4)
(2.5) Gi(rys vy 1) = €Gi(5y5 ooy )

i=1,...n)

where ¢ = —;. Let
f(-x) — (x_rl)'"(x—rn)! g(x) — C(x_sl)---(x_sn)-

In consequence of (2,5) f(x)=g(x). Thus c=1, i.e. x+y=0, what is impossible
because x+y=1. Therefore /; =0.

If i+, runs over all the numbers «+1, ...,n different from iy, ..., i, then
on the basis (2,2) we get that

2.6) 3 xPer (A, AL

Tleaalpal
B—G=T (|41 %

+y2 Per (A(z)‘ (:) )”34-2.7(}' PerA(c) —

il---fr-&l i1 s Ribpgy —

= x2Per(A(f),, A )2 +y* Per (AR, AR, )2+ 2xy Per AL,
with equality if and only if the numbers 4,, ..., 4, different from 4,,...,4,, 4;, ..., 4; ,
are zero.

Using formula (2,6) for all combinations i, ..., 7, of order r of the elements
a+1, ..., n, without repetition and without permutation, it can be shown that the
expression of the square brackets on the left hand side of (2,6) appears r+1 times
among these inequalities. Calculating the arithmetic mean of these inequalities,

i. e. dividing both side of the sum of these inequalities by [":a], after all we

devide the left hand side and the right hand side of the sum of these inequalities by
n—o—r(n—a n—o n—o ; 3 g
r-i-_l[ g ]_(r-H and by ( " ], respectively. Thus we obtain the inequa-
lity of our Theorem 2.1. with equality if and only if 4,,,=...=1,=0.
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Corollary 2.1, If AcK, x¢R,, yeR,, x+y=1, then

|
GRUENZECV (xRN = (=0,1,..,n-2)

with equality if and only if A=S,.

ProoF. In this case all components of the vectors U, and v, are 1/Vn, thus
G{V(x, y)=n!/n". Equality if and only if 1,=...=1,=0.
We get Theorem 1.1 from Corollary 2.1 in the case r+1=n—1.

Corollary 2.2. If A=UAV* is the polar representation of AcK and if
X€ER,, yER,, x+y=1 then

1. A® €K ifandonlyif iy=1.

ir...dy
1I. GUh(%,»)=Gx,y) (r=1,..,n-1).

Proor. A{" , €K if and only if one of 4,,...,2, is equal to 1 and the cor-

il...l',
responding column-elements of U and V are 1/Yn. U and V are orthogonal
matrices, therefore these conditions are satisfied o ly if j=1.

In the case II. equality holds if and only if A,=...=4,=0 contradicting to
;‘:'l:]'

3. The extension of the second Theorem
Let

: - 4 Per A{®

GC@(4) = e
4 ( ) ["_a]w+l§!‘-<.,.<l,§n ok
r

(r=01,..,n-a-1; a=0,1,....,n-1; r+a=1).

Theorem 3.1. If the matrix A€K has the polar representation A=UNV*
and if

(3.1 Per Cp, ;5. (U)Per Cp, , (V) =0.
(ﬂls seey IBH)EF!

then

3.2) G (A) = G (A4)

(xa=0,1,...,n—1; r=0,1,....,n—a—1, r+a=1)

with equality if and only if Ayyy=...=2,=0.
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PrOOF. Applying again the Cauchy—Binet expansion theorem, we get
A, ABeQfavr Jfenr

Perdffy,,= X gt
Bittly=n Brlee Ba! Basr! e Bass!

X Per G, UR ) Per Gy, 4., (V@) +

lpul'p

X

Pasr

;'llﬂl'";-f-)'ﬂ.“1---15_-‘:1""1 X
ﬂ,+.,.+ﬂ',””ﬂl 'ﬂ:’ ﬂ«+l!"'ﬁ:+r+l!
Bryra1®=1

X Per C’l---ﬂk-ﬁr-&l(U.") ) PCT Cﬂl___ﬂ.,.--pl(%:l:).l}y;)'

I]u.‘r¢ 1

+

Thus
Per A{® ., =Per A{®;

Melerdl =
with equality if and only if 7, ,,=0. Namely let us suppose that 4, =0. Since

/,=1 according to condition (3.1) we have

Per Cyyatify mn=tU82 4o DPE Cointite  mnt(Viy, 1) =0

(i=0,1,..n—1)

that is
(3.3) Gi(rys s T)Gi(515 -..s 5) = 0
Bl ...n)
Since
rt..+r,=0, rn+..+ri=1,
we get

1
G::(rh veey n) = _E-»

and similarly

Ga(sla saay su) = _"2"'1
i.e. condition (3,3) is not satisfied in case i=2. Thus Z,_, =0.

From this the proof is similar then the proof of “Theorem 2.1. If i,4; Tuns
over all the numbers a+1, ..., n different from i,, ..., 7, then

1
(3.4) ot oy Al P,
with equality if and only if the numbers 4,, ..., 4, different from 2,,..., 24, 2, , ..., 4, ,
are zero.
Using formula (3.4) for all combinations iy, ..., i, of order r of the elements
a+1, ..., n, without repetition, and without permutation, it can be shown that
Per Ag*'_)_'im appears r+1 times among the left hand side of these inequalities.

Taking the arithmetic mean of these inequalities, i.e. dividing both side of the sum

of these inequalities by [”:“]. after all we devide the left hand side and the right
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hand side of the sum of these inequalities by e [n _a] - (:1—&] and by [n —a] i
r+1 r -+ 1 r
respectively. Thus inequality (3.2) holds with equality if and only if 4,,,=...=4,=0.

Corollary 3.1. Let A=UNV™ be the polar representation of A€ K. If condition
(3.1) is satisfied then

!
G(AD) = GAM) = —

=@ b el
with equality if and only if A=S,.

ProoF. In this case G{"(A)=u,v;=3S, with equality if and only if Z,=...=
=4,=0, i.e. 4=S5,.

Corollary 3.2, If the matrix A€K satisfies condition (3.1) then
G!%9(A4) >G4 (r=0,1,...,n-1).
Proor. Equality holds if and only if 4,=...=4,=0, contradicting to 4,=1.
Corollary 3.3. If A€K is a symmetric positive semidefinite matrix then
G (A) = G(A)
(x=0,1,..,n-1; r=0,1, ...,n—0a—1; r+a=1).

In particular

|
G, (4) = GW(4) = :— (r=0,1,...,n=2)

with equality if and only if A=S,. Moreover
Gh(A) = G4 (r=0,1,..,n-2).

PrROOF. In this case condition (3.1) is satisfied trivially.

Since G{",(4)=A, Corollary 3.3. contains Theorem 1.2. too.
Finally the importance of Theorem 3.1. is expresses by the following theorem:

Theorem 3.2. Condition (3.1) is satisfied by the elements of an infinite subset
of K, containing non-symmetric non-positive semidefinite matrices.
PrROOF. Let us consider the set of the n>xn orthogonal matrices, which have

]/ Vn as the elements of their first column. The power of these orthogonal matrices
isinfinite. We decompose now this set into mutually disjoint subsets. Two orthogonal
matrices U and V belong to the same subset if condition (3.1) is satisfied by them.

Since we have finitely many subsets [their numbers is equal to exp, (2n2— I)] at

least one subset should contain infinitely many elements. This complets the proof
of Theorem 3.2.
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