Localization in duo rings

By ELBERT M. PIRTLE (Kansas City, Missouri)

1. Introduction. A duo ring is a ring in which every one sided ideal is two sided.
Such rings are called two-sided rings in [8] and [9]. Duo rings were so named by
FELLER in [2]. Several examples of noncommutative duo rings were given in [4].
In [1], SCHILLING first studied noncommutative valuation rings and lemma 2 of [1]
shows that they are duo rings. Since every noncommutative totally ordered group
is the value group of some valuation [5], the collection of noncommutative valuation
rings is a large class of duo rings.

It is easy to see that R is a duo ring if and only if aR=Ra for all a€R. Thus
when R is an integral domain, R has a (left and right) division ring of quotients
D={a"'b|a,beR, a=0}={ba'|a,beER, a=0}. In [1], Schilling showed that if
R is valuation ring with unique maximal ideal P then x 'Px=P and x 'Rx=R
forall xéeD*=D {0}. P and R are said to be invariant under inner automorphisms
of D*. Schilling used the invariance of R and P to construct a quotient ring
R, with properties similar to those in the case where R is commutative.

In this paper we extend Schillings ideas to integral domains which are duo rings.

Let R be a duo ring with identify 1:0. A subset S of R is called a mul-
tiplicative systemin R if 04 S and s,5,€S for all s,, 5,6 S. The following theorem
shows that prime ideals in duo rings have the same characterization as prime ideals
in commutative rings. Thus let P be an ideal of R.

Theorem. The following are equivalent in R.
(i) P is a prime ideal of R.

(i) For a,beR, if abeP, then acP or beP.
(iii) R\P is a multiplicative system in R.

PrOOF. (i)« (ii) is found in [3]. (i1)<>(iii) is clear.

In this paper all rings are integral domains with identity 1:0. Section 2
characterizes duo rings in terms of groups of divisibility. Section 3 treats the problem
of localization with respect to multiplicative systems.

2. Groups of divisibility in integral domains which are duo rings.

Let R be an integral domain which is a duo ring and let D denote the division
ring of quotients of R. U denotes the multiplicative group of units of R and D*
denotes the multiplicative group of nonzero elements of D. This section charac-
terizes duo domains in terms of groups of divisibility.

Theorem 2.1. U is a normal subgroup of D".
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Proor. Let xeD*, ucU. Then x=a lb=ca™' for some a,b,ccR. Thus
xuxt=abub 'a=ca 'uac~'. So it is sufficient to show that a 'wacU, aua*c U
for all acR. So let acéR, a=0, and let ucU. Then a 'ua=a lar=rcR, where
uta=as. So (a " *ua)a ‘u='a)=1=rs=sr. Thus r=a'wacU. Similarly, aua=€¢U
for all acR, a#0 and U is normal in D*.

Definition 2.2. D*/U is called the group of divisibility of R.
Proposition 2.3. D*/U is a partially ordered group where xU=yU<>x"1yeR.

The proof is straight forward and is omitted.
Let v: D*—D*/U denote the natural map. Then

(D) v(xp)=xyU=(xU)yU)=uv(x)c()).
(2) If x,yeD* and x+y#0, then v(x+))=uv(r) for any r€D* such that
v(t)=v(x) and o(r)=v(y).

For suppose t(t)=v(x) and o(#)=v()). Then ¢~ 'x, 1 y¢€R and so 1 'x+
+t7ly=¢t"Yx+))ER. Then 1tU=(x+))U, ie., v(t)=ct(x+)).

Definition 2.4 [6, pg. 10]. A partially ordered (p.o.) group is said to be directed
if any pair a, b€G has a lower bound (1.b.) ¢€G (equivalently, if any pair a, b€G
has an upper bound).

Proposition 2.5. With R, D, D*, U as above, D*/U is a directed group.

ProOOF. Let xU, yUeD*/U. Then x=a~'b, y=c~'d for some a,b,c,deR.
Then a U =xU and ¢ '=yU. This gives (ac) U =a U and (ac)"'U=cU.
For aca™'=cqaa 1=c,, where ac=cqa for some c,€R, and acc™'=a€R. Thus
(ac)='U is a lower bound for xU and yU and D*/U is directed.

Now, let D be adivision ring and let G be adirected group. Let v: DG {=}
be a function satisfying (1). (2) of Proposition 2.3 and (3) v(0)=< and v maps
D onto GU{=}. Let R={xeD |v(x)=e}. The following extends Schilling [1]
and YaKabe [7]. We assume without loss of generality that G is generated by
U(e)={xeG | x=e} [6].

Proposition 2.6. (i) R is a subring of D; (ii) R is a duo ring; (i) D is the
ring of quotients of R.

Proor. (i) Clearly ©(1)=e. Since (—1)*=1, this gives v(—1)=uv(-1)"L
Let acG be a lower bound for v(—1)=e¢(—1)"' and e. Then a=v(—1) and
ase. This gives a=v(—1)=uv(—1)"1=a"'se so wv(—1)=e and uv(—-1)=
=v(—1)"1'=e, giving v(—1)=e. It follows that v(x)=uv(—x) for all x€D, and
that R is a subring of D. Let a€R, and let A A={x€R|v(x)=v(a)}. Clearly
aR=A=Ra and R isduo. That D is the ring of quotients of R follows from the
fact that v maps D onto GU {<=}.

We combine the above to get the following.

Theorem 2.7. Let D be a division ring. A subring R of D is a duo ring with
D as ring of quotients if and only if there is a directed group (G, =) and a map
from D onto GU{==} satisfying properties (1), (2), (3).
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3. Multiplicative systems and localization in duo domains.

Let R be a duo domain with D as division ring of quotients. Let 7 be a
multiplicative system in R. The collection & ofideals 4 of R suchthat ANT=0
is not empty and Zorn’s lemma shows that % contains maximal elements. The
argument that the maximal elements of & are prime ideals of R is similar to the
commutative case using the fact that Ra=aR for all a¢R. Let P; denote the
collection of maximal elements of %, and let S=R\(lJP;)=(R\P;). Then

i i

S is a multiplicative system in in R and T<S. When R is commutative, S is
called the saturation of T and R;=Rg (see [10], pg. 13).

Lemma 3.1. Let S be a saturated multiplicative system in R, and let s,,5,€S.
Then s,5,=5,8,=S5,5, for some s,, s,€S.

PROOF. s5,5,=s5,5; for some s;€R. If s;€S=(R\P,) then s;¢P; for some
A

/ and then s,5,¢SMP,=0, a contradiction. So s;€S. Similarly s;€S.
We observe that the above lemma holds when R is not an integral domain.

Proposition 3.2. Let S be a saturated multiplicative system in R. Then Rg
is a subring of D, where R,={s'as|scS, acR}.

PrOOF. It is straight forward to show that Ry is closed under multiplication.
To see that Rg is closed under addition, let s'a, t~'b€Rg. Then s~ 'a+t b=
=(s"t)"Yta+sb), where ts=s"t. The above lemma show that s'€S.

Definition 3.3. If T is a multiplicative system in R, we define R,;=Rjg,
where S is the saturation of T.

In the case where R is a noncommutative valuation ring with unique maximal
ideal P, SCHILLING [1] showed that P is invariant under all inner automorphisms,
i.e., that xPx =P for all xeD*. It follows that in a duo domain R, a prime
ideal P is invariant if and only if S=R\_P is invariant.

Definition 3.4. Let T be a saturated multiplicative system in R. T is said

to be invariant iff xTx"'=T for all x¢D*.
The following characterizes invariant multiplicative systems.

Theorem 3.5. Let T=(\(R\P,) be a saturated multiplicative system in R,

2
where {P;}=% isacollection of prime ideals of R. Then T is invariant iff xP;x €%
for all xeD*, P,e¥.

PROOF. It is easy to see that if xeD*, P;€., then xP,x~! is a prime idealof R.

Suppose that & is closed under inner automorphisms. Let €T, xéD*.
If xtx™'4¢7T, then xtx~'€P; for some A. Say xtx~'=a€P,;. Then t=x"lax¢
€x 1P, x€% Then tcTN(UP)=[R\(UP)IN(UP;)=0, a contradiction. So
xTx 1CT for all xeD*. It follows that xTx~*=T for all xeD*.

On the other hand, if T is invariant, then xtx~'€T for all xéD*, teT. So
T=xTx"N\P;=0 forall P,€% Thus TNx"'P,x=P forall P,€¥ and & is
closed under inner automorphisms.

4 D



50 Elbert M. Pirtle

In general, if T is a saturated multiplicative system in R, it is not always
true that Ry, is a duo domain. The following gives a sufficient condition for Ry
to be a duo domain.

Proposition 3.6. Let T be a saturated multiplicative system in R. If T is
invariant, then Ry is a duo ring.

PrROOF. Suppose T is invariant. Then for t€T, ac R*, we have a 'ta=t"¢T,
so ta=at,, and ata *=t,€T, ie., at=t,a. Let x=571b, y=t"1¢ be arbitrary
nonzero elements of Ry. Then xy=(s'b)(t *c)=s""(bt ")e. Since T is invariant,
bt='=1t7b for some 1,€T. Then xy=s"Y(t7'b)c. Now, bc=c’b for some ¢’€R
and since M is saturated, s~ =t;'s"1 for some £,€7. Then xy=t;'s"1c’b.
We have s~1c’=c"s~! for some c"€R, so xy=(t;c")s~b=)y"x, where y'=t;"c.
Thus xRy S Ryx. Similarly R;xS xRy and Ry is a duo ring.

Lemma 3.7. (1) If {T,} is a collection of subsets of R then for any x¢D*,
X KNT)x=Nx"1T;x.

(2) If S is a multiplicative system in R, then for any x€D*, x~'Sx is a mul-
tiplicative system in R and x 'Rgx=R,-1g,.

ProOOF. (1) is straight forward. It is also easy to show that x~'Sx is a mul-
tiplicative system if S is a multiplicative system. So let yéx"'Rgx. Then y=
=x"Y s~ r)x=(x"2s"1x) (x"rx)=(x"1sx)"Y(x"rx)€R,-15, since x~rx€R. On
the other hand, let Z€R,-1,5, say Z=(x"1sx)"'r. Since R=x"'Rx, we have
r=x4x for some 2ER. Then Z=0C""3x)"r=CG"xix=x""Y)xE
€x~1Rgx, and we have equality.

Now, let S be a saturated multiplicative systemin R, say S=(1{R—P|PcF},
where # is the collection of prime ideals of R which are maximal with respect
to the property that P S=0. If Rg is a duo ring, then Rg=x"'Rgx=R,-1,5=
=Rnx-1 g p;x- Thus F is closed under inner automorphisms and § is invariant
by 3.5 above. This together with 3.7 above gives

Theorem 3.8. Letr S be a saturated multiplicative system in R. Then Rg is
a duo ring<=—==35 s invariant.

Let S be a saturated multiplicative system in R. Rg={s"'r|s€S, reR}.
It can be easily shown that Rg={s~'r|scS,reR}={rs"*|s€S,rcR}. Let A be
an ideal of R. The right extension of A to Ry is

A: = ARS = {Z a;r;sflla;EA, r(ER, S;GS} - {asﬁllaﬁA, SE S}.
Similarly, the left extension of A to Ry is
Af = RgA = {Zsf’ria,\sies, ri€R, a;cA} = {s~'a|scS, acA).

Proposition 3.9. (1) The right extension of A to Rs is a right ideal of R
(2) The left extension of A to Rg is aleftideal of R.

PrOOF. (1) Suppose as '€ A¢ and rt~*€Rg. Then (as ') rt~")=a(s 'rs)s .
Then s 'rs< R, so a(s~'rs)=a’€A, and so (as')(rt~')=a'(ts) '€ ARg. Similarly,
RgA is a left ideal of Rs.
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Definition 3.10. Let A be an ideal of R, S a saturated multiplicative system
in R. A issaid to be S-invariant if s '4As=A for all s€S.

Clearly, if A4 is invariant, then A4 is S-invariant for any S.

Let P be any prime ideal of R, and let S(P)=R\/P. Then P is S(P)
invariant. For let s¢S=S(P) and acP. Then if s 'as=t€S, then as=stcP
and s¢ P, t¢ P a contradiction. Thus s 'PsS P, and P is S(P)-invariant.

Proposition 3.11. Let A be an ideal of R, S a saturated multiplicative system
in R, with AN\S=0. If A is S-invariant, then ARs=RgsA is an ideal of R.

Proor. Let as ™ '2ARs. Then as '=s"sas™) and sas™'€A since A is
S-invariant. Thus ARgS RgA. Similarly RgA S ARs.

It is clear that ARg is a proper right ideal (1.8) of RgeANS=0; and
similarly for RgA.

As is the case when R is commutative, if P is a prime ideal of R and S=R\ P,
we write Rp for Rg.

Corollary 3.12. For any prime ideal P of R, Rp is a local ring with unique
maximal ideal PRp.

Now, let A4, B be ideals of R.

Definition [13, pg. 254). A."B={d¢R|BdS A}. A." B is an ideal of R [I13].
Let {M,} denote the collection of maximal ideals of R. The next lemma is
similar to [12, pg. 94].

Lemma 3.13. Let A be an ideal of R, and let x€R. If x€ARy, for dall 7,
then x€A.

Proor. If x€AR,, then x=at,', where acA, 1,6 R\M;. Then xt,=acA,
and so A R,EM; since 1,6R\M;. Thus A4."R, is contained in no maximal
ideal of R and A."R.,=R. Thus 1€4."R, and x€A.

Corollary 3.14. R=[|Ry,.
A

Proor. Clearly RE(Ry,. Let z=p~'xe Ry, for some x, yéR. Then
i i
XE(RY)Ry,= for all 4. Thus xeRy=yR, and y~'x=z€R, and R=[\Ry,.
A

Now, let S be an invariant multiplicative system in R so that Rg is a duo
ring. Let A be anideal of R and let &/ be an ideal of Rj.

Definition 3.15 [11, pg. 218].

(i) The extension of 4 to Rg is A*=ARg=RsA.
(if) The contraction of & to R is &/*=4/(\R.

Then as in [11, pg. 219] we have the following

Lemma 3.16. Let o/, B be ideals of Rs, A, B ideals of R.
(1) ACB=>ACE; AC B> A C B
2) ACCS of; A2 A
(3) o cec — ‘gc; A% = 4°

4%
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Corollary 3.17. [11, p. 223). Let o be an ideal of Rs. Then oA =sd, i.e.,
every ideal of Rg is an extended ideal of R.

Proor. Let a'c€o/. Then a'=s~', for some scS, reR. Then rea®, and
acsl, and o SoF. Clearly o°°C .

It is clear that (i) if A is an invariant ideal of R, then A®= ARy is an invariant
ideal of Rg: and (ii) if o/ is an invariant ideal of Rg, then &/°=%/(1R is an
invariant ideal of R.

Theorem 3.18. Let # be an invariant prime ideal of Rg. Then 2?=PR;s
where P=2\R=2P¢ is an invariant prime of R and R,=(Rs)pg;-

PrOOF. Let T=R\P. Then SET since PNS=0. Let x€R,. Then
x=t"r,teT,reR. We have Z?=PRg by corollary 3.17 above, and so PRs=
={s"1a|s€S, acP}. Then RN\ PRg={s""|scS, tcP={s""1|s€S, t€T. If
Xx€(Ry)prss then x=(s"1)"Ys7'r), where 1€T,s5,5,€S. Then x=r"lss7lr=
=177 (s, 557 ) r=(52)"'(s"r)ERp. S0  (Rg)pr,SRp. On the other hand,
TgRs'-PRS and RgRs, 50 RP‘:RTE(RS)PRS'
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