On a theorem of Hanna Neumann

By SAVA KRSTIC (Belgrade)

Let W(x, y) be a group word in x, y and element of a free group G. HANNA
NEUMANN proved in [3] that such a word determines an associative operation on
G if and only if W(x, y)=a, x, y, xay or yax, for some constant a from G. In[2]one
can find a generalization of this theorem. Our goal in the present article is Lo gene-
ralize H. Neumann’s theorem in another direction. Namely, we shall consider the
equation of generalized associativity

(1) A(x, B(y, 2)) = C(D(x, y), z)

and find among all quadruples (A4, B, C, D) of group words in two variables over
a free group those for which the above equation holds.

Refering the reader to the book [1] we only remark that functional equations
of associativity and generalized associativity have been solved in many different
contexts.

Finally, we wish to thank A. KraPEZ, for the present article originated in
a discussion with him.

§ 1. Preliminaries

Polynomials. In accordance with the corresponding concept of universal
algebra, by a (group) polynomial we mean any group word P(x,, ..., x,) built of
variables x,, ..., x, and elements of the group G. Clearly, the just defined poly-
nomials over G are elements of the free product of G and the free group
(xy, X3, ...). Every polynomial P(x,,...,x,) determines an n-ary polynomial
operation on G. Without many efforts one can prove that in the case of a free
group G the correspondence between polynomials and polynomial operations
is one-to-one. Since we shall work under restriction to that case we shall use in the
sequel only the word polynomial giving it both mentioned meanings.

As usual, we say that the polynomial P(x,, ..., x,) is non-degenerate if it really
depends on all variables x,, ..., x,.

Every polynomial can be represented as a product of monomials:

(2 P(Xy, 5005 %) = P3(30). . P ($s

£y ..o & belonging to the set of the x;’s. This representation is to be called a
factorization of P if all monomials P,, ..., P, are non-degenerate and if &;#&,,,
for every i, 1=i<k. Polynomials need not have unique factorization, but if
P(xyy ooy X)) =04(1m) ... Ox(ny) is another factorization of the polynomial P from
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(2) then k=k" and &,=n;, 1=i=k must hold. Thus the word P =¢,... &
is independent of the factorization chosen and it will be called the rype of the poly-
nomial P.

Subsidedness. Let
3 POt o oo 2 = 058P0 200,

be in reduced form as an element of G#*{(x,, ..., x,> The subsidence P° of the
polynomial P is, by definition, the polynomial obtained from the right-hand side
of (3) by deleting the symbols a,, a, and all those a; for which & =¢&,.,. The
polynomial P is subsided if P =P° Clearly, P is subsided iff it factorizes as a
product of subsided monomials; subsided polynomials have unique factorization.
Further, if (2) is a factorization of P then

PO(xyy oy X)) = PP(EY)-- PR(E)

is the factorization of P°. Also, subsidedness is preserved under substitution and
multiplication of polynomials.
Later on we shall make use of the following simple

Lemma. Let U, V, W be subsided non-degenerate monomials over a free group G.
If tU(V(x)W(y)) is equal to xy, yx, xyx, yxy, then U(t) is equal respectively
to t, t=, tpt ', t “'pt, where p is an element of G.

Similar solutions. For a given U(x, y) denote by Ul(x, y), U'(x,y) and
U"(x, y) the polynomials U(y, x), U(x"%, ») and U(x, y~'). Given a solution
(A4, B, C, D) of the equation (1) one can immediately obtain the three related solu-
tions (C, D, A, B), (A", B™*,C, D) and (A, B,C’, D™") called respectively dual,
left transform and right transform of (A, B, C, D). Two solutions of (1) are to be
called similar if one can pass from one of them to another applying several times
the operations of dualizing and left and right transforming. Similarity is evidently
an equivalence relation and it is easy to prove that there are at most eight different
solutions equivalent to a given one. (In fact, the group of similitudes which acts
on the set of all solutions of (1) is isomorphic to the group of quaternions.)

§ 2. The Theorem

There is a lot of degenerate solutions of the functional equation (1). Since it is
both simple and a cumbersome task to find and write down all of them we shall
confine our attention to the non-degenerate case; so, the polynomials A4, B, C, D
are supposed to depend actually on two variables.

Further, because a solution of the equation (1) immediately produces all eight
that are similar to it, we shall work “up to similarity”. The list of solutions is con-
sidered complete if it contains at least one member of every class of similar solutions.

Finally, we shall work under one more restriction which is of somewhat greater
complexity. Note that if (A4, B, C, D) is a solution of (1) then its subsidence
(A°, B°, C°, D°) is a solution too. There is a close relationship between two solu-
tions with the same subsidence because they differ only in several constants out of
G. Thus the essential part of a solution is contained in its subsidence. To avoid
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introducing a number of parameters (which would be indispensable if one wished
to have all solutions) we are going to find only subsided solutions. We remark
that the method used for obtaining subsided solutions does not need any substantial
refinement in order to handle the general case. As an example (see Corollary 2)
we shall write out the solutions with a complete set of parameters in a simpler case
of solving equation (1) over a free semigroup.

Theorem. Every subsided non-degenerate solution of the equation A(x, B(y, z))=
=C(D(x, y), z) over a free group G is similar to a solution of one of the following
two forms:

(D A(x, 1) = (P1)* p, (P)" ... p, (P1)™
B(y,z) = OR
C(s, 2) = (sRy*py(sR)" py... p (sR)™"
D(x, y) = PQ
(11) A(x, 1) = PP p, P P~2p,...p, PP
B(y,z) = QRO™
C(s, 2) = 52372y 32% 57 Dy s P 32082
D(x, y) = PQ,

where P=P(x), Q=0(y), R=R(z) are subsided monomials, n=0, p,, ..., p,
are non-trivial elements of G and o, ..., %, a sequence of non-zero integers vhich
in the case (1) satisfies the additional condition that any two consecutive members of
it are of different sign.

PROOF. Let A(x, t), B(y, z), C(s, z), D(x, y) be subsided monomials and let
T(x, y, z) = A(x, B(y, 2)) = C(D(x, y), 2),

the ternary polynomial T is then subsided too.
We begin with deducing some information about types of polynomials occur-
ring in the equation above.

(4) tT does not begin with y.

Assume the contrary; then tA(x, 1) begins with ¢ and the first factor in the
factorization of A(x,7) is a monomial U(r). tU(B(y, z)) is an initial segment
of tT which implies that in 77 both y and z occur before the first occurence
of x. Analogously we obtain that tC(s,z) begins with s and thence that both
x and » occur in 17 before the first occurence of z. The contradiction just
obtained establishes (4).

By a similar argument one can prove that

(5) None of xyx and zyz occurs as a subword of tT.

If U(r) is a non-degenerate monomial then tU(V(x,, ..., X)) contains as
a subword at least one of 1V(x,,...,x;) and V' (x,, ..., x;). This general fact
and (5) yield that zyz does not occur as a subword in B and that xyx does not
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occur in tD. Thus we get tB=yz, zy or yzy and tD=xy, yx or yxy. The proof
of (4) gives also that 7T cannot begin with xz or zx which, together with (5),
implies that 7T begins with xyz or zyx. Hence the two equalities TB=yzy and
tD=yxy cannot hold at the same time.

Utilizing duality one can pass from a solution in which tD=yxy holds to
a solution with tB=yxy. Further, the left (right) transform of a solution in which
tD=yx (tB=zy) holds is a solution with tD=xy (tB=yz). So, as for the types
tB and 1D itis enough up to similarity to consider only two cases.

Case | tB=yz and 1D=Xx).

Let B(y,z)=0,(»)R(z) and D(x,))=P(x)Qy(y) be factorizations for B
and D. Since we do not know anything in advance about the types of 4 and C
we write the factorizations

©) {A(x, 1) = Py(x) A, (1)... P (x) A, (1)

C(s,2) = C,(8)R;(2)...Co: (5) Ry (2)

allowing some of the monomials P,, 4., C;, R,, to be trivial.

Our first goal is to prove Q,=Q,. Suppose P,=1. It follows that T begins
with x and then that it begins with xyz. Hence tC,(D(x, y))=xy and by means
of the Lemma we get C,(s)=s. Similarly tA4,(B(y, z))=yz or yzy and the Lemma
implies A,(r)=t or tpt~'. In any case we have

A(x, B(y, 2)) = Py(x)Q; ()R(2)...
C(D(x, y), z) = P(x)Qs ()R, (2)....

All polynomials in these equalities are subsided and Q,=Q, follows. The remaining
case P,=1 is quite analogous and leads to the same conclusion.

So we have B(y, 2)=Q(y)R(z) and D(x, y)=P(x)Q(») for some monomials
P, 0, R.

From (5) it follows that between any two successive occurrences of x in
tT(x, v, z) there stands one of the words yz, zy, yzy. Invoking the Lemma we
obtain that all monomials A4;(r) (except perhaps A,=1) in the factorization (6)
are equal to 7, ¢! or t !'p;t, where the p; are elements of G. Analogously, every
factor Ci(s) is equal to s,57' or sp/s—'. Consequently in the factorization of
T(x, y, z) every factor in x is of the form P, P~! or P~1pP, factors in y are
Q or Q! and factorsin z are R, R™' or RpR™\.

Looking at T(x, »,z) as A(x, B(y,z)) we see that immediately after any
occurence of the factor Q in T stands an R or RpR™!, immediately before

™ any occurence of Q7! stands an R™' or RpR™!' and every RpR™! is sur-
rounded by Q@ and Q™! following the pattern QRpR'Q~L.

In the same manner it follows from T(x, y, z)=C(D(x, y), z) that

immediately after any occurence of the factor Q' in T stands a P or
(8) { P~'pP, immediately before any occurence of Q stands a P or P !'pP and
every factor P~ 'pP occurs as a part of some Q" 'P~'pPQ.
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One can easily prove (see (4) and (5)) that neither xzx nor zxz can be a sub-
word of 7. This implies that

among any three consecutive factors in the factorization of T(x, y, z) at least

(9){one it 0 ot @

Taking into consideration that t7 begins and ends with xyx or zyx it follows
from (7), (8) and (9) that the polynomial T(x, y, z) is of the form

(10) T(x, y, z) = (PQR)™ p, (PQR)* p;...p,(PQR)™,

where p,, ..., p, are nontrivial elements of G and «,, ..., 2, are nonzero integers
such that «;2;,.,<0, 1 =i<n.

Now the equality (10) directly implies that the polynomials 4, B, C, D are
exactly of the form described in part (I) of the Theorem.
Case 2. tB=yzy and tD=xy.

We do not wish to repeat arguments from the previous case, so we only remark
that now there exist monomials P, Q, R such that

B(y, 2) = Q(MR(2Q7(y), D(x,y) = P(x)Q(»),
and then one can deduce the equality
T(x, y, z) = PQR*Q~'P~'p, POR"Q~'P~p,...p, POQR*Q~' P!
from which the solution described in part (II) of the Theorem is obtained.

Corollary 1. (Nontrivial part of H. Neumann's Theorem.) The nondegenerate
solutions of the functional equation W(x, W(y, z))=W(W(x, y),z) over the free
group G are W(x, y)=xay and W(x, y)=yax, where a is an arbitrary element
of G.

Proor. If the quadruple (W, W, W, W) is a solution of the equation (1)
then (W°, We, W°, W°) or its dual (W°, W°, W° W°) is of the form (I), since
in every solution of the form (II), B=D. Now if we impose in (I) the condition
A=B=C=D(=U) we get immediately U(x, »)=xy.

If We=U then W(x, y)=bxayc for some constants a, b, ¢ out of G. Putting
this into the equation of associativity gives b=c=1. The case W°=U leads in the
same way to the conclusion W(x, y)=yax.

Corollary 2. Every non-degenerate solution of the equation A(x, B(y,z))=
=C(D(x, »), z) over a free semigroup S is equal or dual to a solution of the form

A(x, 1) = cd’ Pata, Pata,...a, Pata,
B(y, z) = b’'Qd"cRb”
C(s, 2) = coscReyscRey...c,scRb”a, 44
D(x,y) = d’Pab’Q d”,

where P=P(x), Q=0Q(»), R=R(z) are non-degenerate monomials, n=1 and
a,b,b",c,d’,d", a,c;(0=i=n+1) elements of S such that b"a;=c;d’, 1 =i=n.
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Proor. Of course, the solution of equation (1) in the semigroup case cannot be
directly deduced from the Theorem. But it suffices to apply a simplified variant
of the method used in proving the Theorem. Accordingly, the first thing is to solve
(1) for subsided polynomials. Thus we obtain T(x, y, z2)=(PQR)" or T(x,y, z)=
=(RQP)", n=1. The general solution is then obtained by introducing constants
between monomials in factorizations and finding a dependence among them which is
necessary and sufficient in order to provide fulfillment of the equation (1).
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