On finiteness of near-rings

By HOWARD E. BELL* (St. Catharines, Canada)

Prompted by a recent paper of PUTCHA and YAQUB [6], we resume the study
of finiteness in near-rings, which was pursued by various authors several years
ago (see [1], [3], [4] and [5]). Our results, most of which are for distributive near-
rings, depend on the following results from [1]:

(I) Every infinite distributive near-ring contains an infinite subring or an
infinite subnear-ring with trivial multiplication.
(I) Every infinite nil ring contains an infinite zero ring.

We deal with left near-rings N, denoting the additive group by N*, the
centralizer of an element a in the group N* by Cy(a), and the derived group
of N* by N’. For SCN, the symbols A,(S), 4,(S) and A(S) denote the left,
right, and two-sided annihilators of S; and the symbol (S) denotes the subnear-
ring generated by S. In one of our theorems we shall speak of FC-groups, defined
as those in which each element has only finitely many conjugates, or equivalently
as those in which the centralizer of each element has finite index. We shall also
mention Tarski groups, defined as infinite groups in which every proper subgroup
has order p, where p is an odd prime. The existence of Tarski groups has only
recently been announced; and, as far as I am aware, a proof has not yet appeared
in the literature.

1. Near-rings with finitely many non-nilpotent elements

Theorem 1. If N is a non-nil distributive near-ring having only a finite number
of non-nilpotent elements, then N is finite.

Proor. Note that N contains non-zero idempotents; indeed, each non-nilpotent
element has an idempotent power. If there exists a non-zero central idempotent e,
then for each nilpotent element wu, e+u is non-nilpotent; otherwise e=e+u—u
would be the difference of two commuting nilpotent elements, hence a nilpotent
element. Thus {e+u|u nilpotent} is finite; hence N has only finitely many
nilpotent elements, so N is finite. In particular, N is finite if it has a multiplicative
identity.
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We make our proof by induction on the number n(N) on non-zero idempotents.
If n(N)=1, let e be the unique non-zero idempotent and let x be any element
of N. Then e+xe—exe and e¢+ex—exe are both non-zero idempotents, hence
both equal to e. It follows that e is central, hence N is finite.

Now suppose that our theorem is true for all N, with n(N,)<k, and consider
N with n(N)=k. Let e be a non-zero idempotent, which we may assume to be
non-central, and write

(1 N = Ne+ A,(e).

If A,(e) is non-nil, then n(Ne)<k and n(A,(e))<k, hence finiteness of N follows
by the inductive hypothesis; thus, we assume A;(¢) is nil and let 4 be any sub-
near-ring of A,(e) with trivial multiplication. Then for ucA we see that (e+uw)*=

=e+eu is a non-zero idempotent, hence e+wu is not nilpotent. Thus, {e+u ucA)
is finite, which forces A4 to be finite; and an appeal to (I) and (IT) shows that A,(e)
is finite. Now write Nezc)Ne-f-(Ner)A,(e)), and repeat the above argument to
show the second summand is finite. But eNe is finite because it has a multiplicative
identity; hence Ne is finite, and by (1), N is finite. This completes the induction.

Applying this theorem yields an extension of Theorems 2.1 and 2.2 of [5];
the proof is omitted, since it is the same as the proof of the ring-theoretic version
in [2].

Theorem 2. Let N be a distributive near-ring having only a finite number n=1
of non-nilpotent zero divisors. Then N is finite.

As past experience predicts, it is difficult to extend these results even to distri-
butively-generated near-rings; however, our next theorem is one such extension.
Recall that a near-ring N is zero-commutative if ab=0 implies ba=0, and N is
an IFP near-ring if ab=0 implies axb=0 for all x¢N.

Theorem 3. Let N be a non-nil, distributively-generated, and zero-commutative
near-ring. If N has only finitely many non-nilpotent elements, then N is finite.

PROOF. Let D be any set of distributive elements generating N *, and let
—D={-d|deD}. Note that if d,,...,d, are in DU(—D) and n is a positive
integer, then (d,+d,+...4+d,)" is a sum of terms each of which is a product of
n of the d;.. Now the hypothesis that N is zero-commutative implies that N is
an IFP near-ring; hence if d,,...,d, are nilpotent elements belonging to D
U(=D),d,+...+d, is also nilpotent. Thus, our hypothesis that N is non-nil
guarantees that D contains a non-nilpotent element, hence a non-zero idempotent e.
Since N is zero-commutative, ¢ must be central.

Let u be an arbitrary nilpotent element of N. If we can show that e+u is
non-nilpotent, then finiteness of N follows as in the first paragraph of the proof
of Theorem 1. Now if e+u were nilpotent, then ¢ would be of the form w, —u,,
with u, and wu, nilpotent and wu, —u, central. However, for any pair u,, u,€ N
with u, —u, central, we can show by induction on n that (u; —u,)" is a sum of
terms of form +uv,v,...v,, where each v; is either u, or wu,; and it follows by
IFP that if u, and w, are nilpotent, then so is u, —u,. Thus, our proof is complete.
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2. Near-rings with chain conditions on non-nil subnear-rings

In [2], there appears the following result, which we shall refer to as Proposition
R,: if the ring R is not a nil ring and has both ascending chain condition and
descending chain condition on non-nil subrings, then R is finite. We shall not
attempt to prove the corresponding result for distributive near-rings, for — assuming
that Tarski groups do in fact exist — the direct sum of a field GF(p) and a trivial
near-ring on a Tarski group is a counterexample. However, under suitable restric-
tions on the additive group, Proposition R, does generalize to distributive near-rings.

Before proceeding, we note that if N is any distributive near-ring, N? is
aring, and N’ is an ideal contained in A(N).

Theorem 4. Let N be a non-nil distributive near-ring having both ascending
chain condition and descending chain condition on non-nil subnear-rings. If N*
is an FC-group, then N is finite.

Proor. The factor near-ring N=N/N’ is a ring; and since N’ A(N),
N inherits the hypotheses of Theorem 4, hence by Proposition R, must be finite.
It follows that N is periodic, and must therefore contain non-zero idempotents.
If it happens that N contains a regular idempotent, then N has 1 and is consequently
a ring; thus, we may assume that N contains a non-zero idempotent e which is
a left zero divisor, and we may write

(2) N = eN+ A, (e). )

Assume that N is infinite. Since N? is a ring, it is necessarily finite; and since
e +xy—e*—xy=0 for all x, y€N, we have eNS N>C Cy(e). The additive group
Cy(e) must be infinite, since it is of finite index in N*: hence, (2) and the finiteness
of eN imply that S=Cy(e)(14,(e) is infinite. In fact, the observation that N?2
C Cy(e) guarantees that S is a subnear-ring; and applying (I) shows that S con-
tains either an infinite near-ring with trivial multiplication or an infinite ring having
a.c.c. and d.c.c. on non-nil subrings. In the latter case, (II) and Proposition R,
imply that S contains an infinite zero ring.

Let B be an infinite subnear-ring of S with trivial multiplication. Now Be,
being contained in N* must be finite; hence, by the first isomorphism theorem for
groups, B,=B[1A4,(¢) must be infinite. Moreover, each element of B, is of finite
additive order, for if u¢B, had infinite order, # and e would generate a counter-
example to Proposition R,. Since Bjf is an FC-group, we see that for each finite

k
subset {uy, ..., 1} of By, () B,/ Cy(u;) has finite index in B,, hence is infinite;
i=1

therefore, we can construct inductively an infinite sequence u,, u,, ... of pairwise-
additively-commutative elements of B,, which together with e¢ generate an infinite
ring — a counterexample to Proposition R,. Thus, the assumption that N is infinite
must be false.

Theorem 5. Let N be a non-nil distributive near-ring with ascending chain con-
dition and descending chain condition on non-nil subnear-rings. If N* s nilpotent,
then N is finite.
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PrROOF. Let N=N,2N,2N;2...2N,={0} be the lower central series of N *;
and let m be the smallest positive integer for which N,, is finite. If m=1, there
is nothing to prove. If m=2, N’ is finite; and since N/N’ is finite by Proposi-
tion Ry, N must be finite. Thus, we need only consider the case m=3.

Let e be a non-zero idempotent, the existence of which follows from the initial
steps of the proof of Theorem 4. Since N is periodic, ¢ must have finite additive
order; and we now show that elements of N, _; also have finite additive order.
Accordingly, for fixed wecN,,_;, consider the descending chain (e, u)=2{e, 2u)
2 (e, 4u)2.... Since it must become stationary at some point, there exists k such
that 2*ue(e, 2**'u); and since N, _,SN'SA(N), we have integers h, j and
an element ¢, €[N,,_,, N]=N,, for which 2*u=he+j2**'u+¢,. Left-multiplying
this equation by e yields he=0, hence

(3) n = J ¥4

Substituting (3) into itself, we get 2*u=2j(2*u)+ ¢, =2j(j2* ' u+c¢,) + ¢, =(2)*2*u+c,
for some ¢;€N,,; and continuing inductively, we obtain a sequence c,, ¢, ¢y, ...
of elements of N, such that 2*u=(2j)*2*u+c, for s=1,2,.... The finiteness
of N, yields distinct positive integers p,gq for which ¢,=c¢,, and therefore
((2/)*—(2)1)2%u=0; thus, provided j=0, u is now seen to have finite additive
order. But if j=0, then 2*u€N,,; and again the finiteness of N, guarantees that
2%u, and hence u, has finite order.

Consider the collection % of all subnear-rings of form (e, u,, ..., ), where
Uy, ...y €N, _,. The ascending chain condition on non-nil subnear-rings yields
a maximal member of ¥, say E, which clearly contains N,,_,. But E={e, uy, ..., 1)
is generated as an additive group by e, u,, ...,u; and in a nilpotent group, any
subgroup generated by finitely many elements of finite order must be finite. Thus,
N,.—1 is finite, contrary to the minimality of m; consequently, the case m=3

cannot occur, and N 1s finite.
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