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By I. G. KALMAR (Debrecen)

1. Introduction

In a previous paper [3] we have given a new generalized axiomatic system
for probability theory. We set out from the following conditions:

(I) Let an atomistic orthomodular o-lattice 2£(V, A, 1,1,0) be given,
calling its elements propositions. Denote Q(%) the atom space (= the set of all
atoms of %).

(IT) Denote by S(€) the class of all subsets 4 of Q(%) for which the
supremum sup 4= VA exists. Let us suppose that S(Q) forms a o-field of sets.

(I11) Let m be a probability measure on %, thatis 0=m(a)=1, acZ; m(1)=1
and

m|V ,-] = Im(a) if at =a,(i#)).
i=1 i=1

We remark that ai* denotes the orthocomplement of a;. It is customary to
say that a, bc% are orthogonal (or disjoint) if a+=5b. In this case we write a | b.

As is known in the axiomatic quantum mechanics (cf. [1], [2]), such an axiomatic
system can be justified on the grounds of physics. Contrary to axiomatic quantum
mechanics, where it is supposed that there is a full set of probability measures
(states) on & (cf. [2, p. 72]), we presume the existence of only one probability
measure m on Z. In oursystem Q(%) may be regarded as the space of elementary
outcomes, therefore, by a random variable we mean a function f of the atom space
Q(%) into the real line R!, such that

S71(B) = {peQ(L) | f(p)eB)ES(Q) forall BeA(RY,

where Z(R") is the set of the Borel subsets of the real line R!. As we have defined
above, the notion of random variable is different from the notion of observable in
quantum physics. An observable is defined as a map x from #(R') into % which
satisfies:

() x(R) =1
(11) x(E) Lx(F) if ENF=0.

(iii) x[iZEi =§:x(£i) if ENE,=0, i].
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This means that x is a g-homomorphism of %(R') into %. However, it may
happen that for an observable x there exists a random variable f such that
x(B)=sup f~(B), BcA(R"). (sup A=VA, AC Q(¥) is the least upper bound of
the elements of A if it exists.) In this case we can say that x is induced by f (or
Jf induces x). Let O denote the set of all random variables f for which f induces
an observable, that is sup f~(B), B¢ #(R") is a e-homomorphism.

We have already see (cf. [3, Theorem 3.1]) that generally supf'(B), Bc#(R")
is not an observable. Furthermore, it is not necessarily an observable induced by
a random variable (cf. [3, Theorem 3.6]).

In this paper firstly we shall examine the structure of O. The main result of
this paragraph is the following: any Borel-function of n random variables contained
in O isin O as well. Moreover, we shall examine the expectation of random
variables and it will be proved that the expectation is an additive function on O.

2. Random variables which induce observables

Before we go on we shall recall some more definitions and notations.
A lattice Z with 0 and 1 is called orthocomplemented when there is a mapping
a--at of & into itself with the following three property:

(i) atAa=1, a+Va=0,
(i) a=b implies al=bt,
(ii) at+=a for all a.

An orthocomplemented lattice % is called orthomodular when in % a=b
implies b=aV(bAa?t).

An eclement p of a lattice ¥ with o is called an atom when 0=b=p 1is
not satisfied by any b0, b+~ p. We say that & is atomistic when every non-zero
element a of % is the join of atoms contained in a.

Throughout this article we shall suppose that %, S(Q), m are such as we
have defined in I—II—IIL.

We have proved in [3, Theorem 3.5] that if the supremum of any two nonzero
elements of & is 1, then f€O if and only if f is constant on the whole 2(%).
The question arises: what can we say about O in a more general case?

Let A, BSQ(¥) and ANB=0. We say A, B to be orthogonal if A, B=0
and their elements are pairwise orthogonal: p1g¢ if p€A, g¢B. A partition
y of Q(&) issaid to be orthogonal if y has at least two classes and any two classes
A, B of y are orthogonal.

First we need the following

Lemma 1. Let A, B€S(Q). Then sup A Lsup(B) if and only if plq for
every pcA, g<B.

Proor. It is trivial.

Theorem 2. a) If Q(¥) has no orthogonal partition, then an arbitrary random
variable f€0 is constant on the whole Q(%).
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b) If QAZ) has orthogonal partition then there exists fc€0 such that f is
not constant on the whole Q(Z).

PROOF. a) If f is constant then evidently f€O. On the other hand let us
assume that Q(%) has no orthogonal partition and f¢O is not constant. Then
sup f~Yx) Lsupf~Yp) for a, BER!, a#pB. Hence by Lemma 1. Q(#) has ortho-
gonal partition which is a contradiction.

b) If Q(¥) has orthogonal partition then there exists also an orthogonal
partition including only two classes, namely 4 and B. Let now f(p)=1 if pc4
and f(p)=0 if p€B. Then it is easy to see that f€O. Thus the theorem is proved.

Let H be a separable complex Hilbert space and let Z(H) denote the class
of all closed subspaces of H. Ordering .#(H) by inclusion and defining the comple-
ment of a subspace as its orthocomplement one can prove that #(H) is an atomistic
orthomodular lattice.

Theorem 3. The atom space Q(.?(H )) has no orthogonal partition.

PrOOF. Let {e;,e;, ...} be a complete orthonormal system in H. Denote by
[a] the smallest subspace of #(H) which contains a (a€H). Then [a] is an atom
in Z(H). Let w;=[¢] (i=1,2,...). Suppose now that there exists an orthogonal
partition: AUB=Q(Z(H)) ANB=0 of Q(L(H)). On account of the completeness
there exists ;, w;€ Q(L(H)) such that €4, w;€B. But [e;+e;], [¢] and
[e;+¢;], [e;] are not orthogonal pairs which contrasts with our assumption.

We have seen in [3, Theorem 3.11] that if every random variable is in O then
& is distributive. As we can show in Fig. 1, there exists an atomistic orthomodular
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non-distributive lattice such that its atom space has an orthogonal partition. Ac-
cording to the above mentioned theorem, this means that in order that the atom
space should have orthogonal partition, it is not necessary for every random variable
to be contained in O.
For example {c}, {a, b, d, ¢} is an orthogonal partition of the atom space.
Let us define now functions of several random variables. Let f,, fi, ..., fu
be random variables and let ¥ be a Borel function on R". We then define

Y(f1s fas --s f) as the random variable p—y/(f,(p), (), ... [u(P))ER. It is
easily checked that y(f,, fs, ..., f,) is a random variable indeed. Moreover, in the

case of fy, fo, ., Ju€O Y(fy, fas ..., fu) 18 1IN O, too, as we shall prove in the follow-
ing theorem.

Theorem 4. If f,, fs,....f,€0 and  is a Borel function on R" then
Vv (f1s fos s SDEO.

ProOOF. For the sake of simplicity, we shall restrict our proof to n=2. In
general we can prove the theorem by a similar method.
Let #(f) denote the range of an arbitrary random variable f. Let L=2(f)),

M=2(f,), Y(f1, f)=h. We prove that
sup h=Y(B,) Lsup h=Y(By) if B,, By€ @.1)
€Z(R"), B, By=0. Namely,
h=1(B,) = !LEJL (AUDNf(m)  and h~Y(By) = &JL (/RN £ N ().

meM ne M
¥(l,m)c B, W(k,n) e B,

Then A='(B)Nh~Y(By) =0, so y(l,m)eB,, IcL,meM and Y(k, n)€ By, kKEL, neM
implies /#k or m#n. To verify assertion (4.1) let us observe that if a | b, c=a,
d=b in %, then also c¢ L d. If |#k, then supf;"'(/) Lsupf,~'(k). Similarly,
if m#n (myneM), then supfy~'(m) Lsupfy-*(n). This implies sup(f,~'(/)/
O fa'(m)) Lsup (f, (k)N £ () if Y(l, m)e By, I€L, me M and y(k, n)€ By, k€L,
neM. Now, on the basis of the preceding remarks we have

sup h=1(B,) = XL sup (/DN fi7'(m)),

meM
(I, me By

suph~Y(By) = V  sup(fi (k)N fi7 ' (n)

ke L
neM
Y(k,n)€ By

and sup 27'(B,) Lsup h7'(B,). Since suph'(R")=I1,suph'(0)=0 hold and
sup i~ (U E;)=V suph~(E), E;€A(R") is fulfilled for every random variable &

(cf. [3, Theorem 3.4]), so h€0O indeed. Thus the theorem is proved.
Corollary 5. If f€O and ¢ is a Borel function on R' then @(f)€0 as well.

PROOF. Let g bein O and let Y(x, y)=¢(x). If Be#(R") then Yy (B)=
=@ Y B)XR'€B(R*, so Y(x,)): R*—~R' is a Borel function of two variables.
Thus by the preceding theorem ¢ (f)=y(f, g €0 which was to be proved.
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3. The expectation of real random variables

Let f be a random variable and let F(x)=m/(sup f (- =, x)). F(x) is called
the distribution function of f. One can verify (cf. [3. Theorem 4.3]) that F(x)
is monotone increasing and continuous from the left. This allows one to define
the expectation of a random variable f as a Lebesque—Stieltjes integral

E(f) = f x dF(x).

In this paragraph we shall deal with the expectation of random variables which
are contained in Q. This is the most important class of random variables because
the inverse map of these random variables induces an observable.

We prove first some theorems for discrete random variables. A real random
variable f is called to be discrete if its range #(f)={x,, X, ...} is denumerable.

Theorem 6. /f f is a discrete real random variable with a range A(f)=
= {x1, X3, ...} R and there exists E(f) then

E(f) = 'leiP?s

where
p;." =m {supf‘l(— oo, x,-]ﬁ\(supf“l(— oo, xi))l} ~

= m{sup f}(~ =, x]—sup f (===, x)}.

PrOOF. It is clear that F(x)=m(supf~'(—==, x)) is a step-function and its
discontinuity qoints are in #(f). Furthermore, x;e #(f) is a discontinuity point
of F(x) if and only if p{=0 and in case of p/=0 the jump in x; is F(x;+0)—
— F(x)=pi.

Corollary 7. If fcO, A(f)={x, Xs, ...} and E(f) exists, then
E(j) o Z'Yipl‘l

where p;=m (sup f~1(x)). :
PROOF.
pi = m(sup (=, x]—sup f ! (— =, x))) =
= m((sup f (===, x;) Vsup f 71 (x;)) —sup f "1 (=0, X)) =
= m(sup f (==, x;)))+m(sup £~ (x))—m(sup f (==, x) =
= m(sup f~1(x)) = pi.
This proves our statement.

Remark. The following example demonstrates that in the preceding corollary
we can not omit condition f€0.

Let & be the lattice of Fig. 2. and let ai=a,, a3 =a,, a3 =a,, a; =as,
0t =1, 14=0; ma)=5G=1,234); f(@)=i (=1,23,4).
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/]

0

Fig. 2

4
In this case /40 and E(f)=15# Z%i.
i=1

In order to prove the main theorem of this section we require the following
two lemmas.

Lemma 8. If f,gcO are discrete random variables with R(f)={xy, X, ...},
A(Q)={y1, Vs, ...} and E(f), F(g) are finite, then there exists also E(f+g) and

E(f+g) = E(f)+E(g).

ProOF. Now by Theorem 4. f+g¢0. Combining this fact with Corollary 7.
E(f+g) is of the form

(8.1) E(f+g) = ; ‘?_T (xi+p)ri

where r,=m(sup (f+2)7'(z;)), R(f+&)={z=xi+y;;i,j=1,23,..} If z,,
is of the form z; ; =x; +y; =x,+y;,=x;,+y;,=..., then

rij, = m(sup (f+8)'(z;,;)) = (sup U (x:)Ng™1 () =
=m( V sup (S x)Ng ()

Moreover, it can be shown (see the proof of Theorem 4) that
(8.2)

sup (f~1(x)Ng=1(y)) Lsup (f ' (xDNg~(»)) if x;=x{ or y;#yj
This implies that in case of k=/

sup (f~1(x;,) Ng~(y;)) Lsup (f~1(x;,) Vg~ (1)
Therefore

(8.3) Fijy = 2 m(sup (7 (xi) g7 09) = 2 riys
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where r/;=m(sup (f~'(x)Ng~'(»;))). By using (8.3) one can easily see that
2 ‘JZ'(x;+y,-)ru = .J?:(xﬁy,-)r:’,--
Furthermore, by virtue of (8.2)
Zry=2m (sup (f '(x)Ng ™ () =
=m (SUP(LJJ (f 7 x) Mg~ (y))) = m (sup £~ (xy).
Returning now to (8.1), these imply that
E(f+g= 'Z ‘jZ(xi+)-,)r,’j = .in%'r,}Jr%'y,in;j =
= Zxim(sup f71 () + 3 yym (sup g~ () = E(N)+E(2),

which was to be prove.

Lemma 9. Let f,, f€O having finite expectations E(f,), E(f) (n=1,2, ...).
If 0=f(w)—f,(w)<1/2" holds for every wcQ¥) and n=1,2, ..., then

lim E(f,) = E(f).

PrOOF. To prove this lemma we first observe that for arbitrary integer / and
natural numbers n, k hold the following inclusion relations:

©.1) g B e il 55
©2 rilmHsrlw =+

tet £,= 3 om(sup st |55, 5))- Then Jim £,=E(7). Since 7, fe

€0 we have

oo

N L e,

©-4) .f: 3o (sup s[5 )] = kEG- z :

l=—ca

By means of (9.1)—(9.4)

5 gomfswrs |3 57)) =

L _I[I I+k+1])
l_—m 5 M [supf =T =

el 4 _1[1—1 I+k+l)]
éi‘:g'“ 2"m[supj], 5 3 x
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Hence
k=1 j k k=1 j 1
kE(f)— 2 =5 = (k+D)E— 2 55 S (k+DES)— 2 55+
i=0 i=0 i=0
k 7 k 1 & 1
k—HE(ﬂ:)=Eu"k_+'TF;E(ﬂ,)+m.

Tending with k and n to infinite we find l!'_m E(f)= !E_m E=FE(/)= lim E(f,),
that is JLIE E(f,)=E(f). Thus the lemma is proved.

Theorem 10. If f,g€O and f, g have finite expectations E(f), E(g) then there
exists E(f+g) and E(f+g)=E(f)+E(g).

ProOOF. Let f,,(w)=% r'ff(w)é[%, !;—”l] and g,,(w)=% Jg(w}é[%,%_,,—]],

where =0, +1, 12, ...;n=1,2,.... Then J,, 2,60 and oéf(w)—_ﬁ,(w)-:%,
Oég(w)—g,,(w)-c% for all weQ(ZF).

By virtue of the preceding theorem now we have
(10.1) lim E(f,) = E(f), lim E(g) = E(g)

Since f,, g,€0 and they are discrete random variables, on the basis of Lemma 8
we have

(10.2) E(fa+82) = E(f)+E(2,)

Because of (10.1) and (10.2) it will be sufficient to show that E(f+g) exists and
nlim E(f,+g)=E(f+g). Let us employ the following notations:

hn :j;l+l+gn+1‘ h :'f+g (H = ls 29 )

In this case h,, heO and O0=h(w)—h(w)<1/2" (n=1,2,...). On the other hand
E(f+g)=E(h) exists and is finite because

I 1+1) [!—l I+1
-1 C -1 s
. [2"’ 2* ) = =y

that is

| [ _1[1 1+1Y)) 1| [ _,[:—1 I+1]]
£z Mt ) 2w ek I o))

where the right side is convergent and equals 2E(h,) +%. By the preceding theorem

now we get lim E(h,)=E(h). This completes the proof.
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