The neutrix distribution product $x_+^{\lambda} \circ x_+^{\mu}$

By BRIAN FISHER and YUKIO KURIBAYASHI (Leicester)

In the following we define the ordinary locally summable functions x_+^{λ} , x_-^{λ} for $\lambda > -1$ by

$$x_{+}^{\lambda} = \begin{cases} x^{\lambda} & \text{for } x > 0, \\ 0 & \text{for } x < 0, \end{cases}$$
$$x_{-}^{\lambda} = \begin{cases} 0 & \text{for } x > 0, \\ (-x)^{\lambda} & \text{for } x < 0. \end{cases}$$

We define the distributions x_{+}^{λ} , x_{-}^{λ} for $\lambda < -1$ and $\lambda \neq -2, -3, ...$ inductively by

$$x_{+}^{\lambda} = (\lambda + 1)^{-1} (x_{1}^{\lambda + 1})',$$

$$x_{-}^{\lambda} = -(\lambda+1)^{-1}(x_{-}^{\lambda+1})'.$$

We define the distributions $|x|^{\lambda}$, sgn $x \cdot |x|^{\lambda}$ for $\lambda \neq -1, -2, ...$ by

$$|x|^{\lambda} = x_+^{\lambda} + x_-^{\lambda}$$
, $\operatorname{sgn} x. |x|^{\lambda} = x_+^{\lambda} - x_-^{\lambda}$.

It follows that

$$(|x|^{\lambda})' = \lambda \operatorname{sgn} x. |x|^{\lambda-1},$$

$$(\operatorname{sgn} x. |x|^{\lambda})' = \lambda |x|^{\lambda-1}.$$

Further, if $\lambda > -r-1$, $\lambda \neq -1$, -2, ..., -r and φ is an arbitrary test function with compact support, then

$$(x_{+}^{\lambda},\varphi) = \int_{0}^{1} x^{\lambda} \left[\varphi(x) - \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m!} x^{m} \right] dx + \int_{1}^{\infty} x^{\lambda} \varphi(x) dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + m + 1)} dx + \sum_{m=0}^{r-1} \frac{\varphi^{$$

see GELFAND and SHILOV [7].

The following definition was given in [2].

Definition 1. Let f and g be two distributions for which on the open interval (a, b), f is the r-th derivative of an ordinary summable function F in $L^p(a, b)$ and $g^{(r)}$ is an ordinary summable function in $L^q(a, b)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then the product fg = gf of f and g is defined on the interval (a, b) by

$$fg = gf = \sum_{i=0}^{r} {r \choose i} (-1)^{i} [Fg^{(i)}]^{(r-i)},$$

where

$$\binom{r}{i} = \frac{r!}{i!(r-i)!}.$$

The next definition was given by van der CORPUT [1].

Definition 2. A neutrix N is a commutative additive group of functions $v(\xi)$ defined on a domain N' with values in an additive group N'', where further if for some v in N, $v(\xi)=\gamma$ for all ξ in N', then $\gamma=0$. The functions in N are called negligible functions. Now let N' be a set contained in a topological space with a limit point b which does not belong to N'. If $f(\xi)$ is a function defined on N' with values in N'' and it is possible to find a constant β such that $f(\xi)-\beta$ is negligible in N, then β is called the neutrix limit of f as ξ tends to b and we write

$$N-\lim_{\xi\to\infty}f(\xi)=\beta,$$

where the limit β must be unique if it exists.

Now let ϱ be a fixed infinitely differentiable function having the properties

(i)
$$\varrho(x) = 0$$
 for $|x| \ge 1$,

(ii)
$$\varrho(x) \ge 0$$
,

(iii)
$$\varrho(x) = \varrho(-x),$$

(iv)
$$\int_{-1}^{1} \varrho(x) \, dx = 1.$$

We define the function δ_n by

$$\delta_n(x) = n(\varrho nx)$$

for n=1, 2, ... It is obvious that $\{\delta_n\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-distribution δ . For an arbitrary distribution g we define the function g_n by

$$g_n(x) = g * \delta_n(x) = \int_{-1/n}^{1/n} g(x-t) \delta_n(t) dt$$

for $n=1, 2, \ldots$ The sequence $\{g_n\}$ is regular and converges to g.

The following definition now extends definition 1 to a wider class of distributions and was given in [4].

Definition 3. Let f and g be arbitrary distributions and let

$$g_n = g * \delta_n$$
.

We say that the neutrix product $f \circ g$ of f and g exists and is equal to h on the open interval (a, b) if

$$N - \lim_{n \to \infty} (fg_n, \varphi) = N - \lim_{n \to \infty} (f, g_n \varphi) = (h, \varphi)$$

for all test functions φ with compact support contained in the interval (a, b), where N is the neutrix having domain $N' = \{1, 2, ..., n, ...\}$ and range N" the real numbers with negligible functions linear sums of the functions

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^r n$

for $\lambda > 0$ and r = 1, 2, ... and all functions of n that converge to zero as n tends to infinity.

The following theorems are immediate consequences of theorems given in [3] and [4].

Theorem 1. Let f and g be distributions. If the product fg exists on the open interval (a, b) then the neutrix products fog and gof exist and

$$f \circ g = g \circ f = fg$$

on this interval.

Theorem 2. Let f and g be distributions and suppose that the neutrix products $f \circ g$ and $f \circ g'$ (or $f' \circ g$) exist on the open interval (a, b). Then the neutrix product $f' \circ g$ (or $f \circ g'$) exists and

$$(f \circ g)' = f' \circ g + f \circ g'$$

on this interval.

The next theorem was proved in [5].

Theorem 3. The neutrix products $x_{+}^{\lambda} \circ x_{-}^{\mu}$ and $x_{-}^{\lambda} \circ x_{+}^{\mu}$ exist and

$$x_+^\lambda \circ x_-^\mu = x_-^\lambda \circ x_+^\mu = 0$$

for $\lambda + \mu \neq -1, -2, \dots$

We now prove the following theorem.

Theorem 4. The neutrix product $x_{+}^{\mu} \circ x_{+}^{\lambda}$ exists and

$$(1) x_{+}^{\lambda} \circ x_{+}^{\mu} = x_{+}^{\lambda + \mu}$$

for λ , μ , $\lambda + \mu \neq -1$, -2, ...

PROOF. We will first of all suppose that $\lambda > -1$ and put

$$(x_{+}^{\mu})_{n} = x_{+}^{\mu} * \delta_{n}(x).$$

Then it follows that

$$\prod_{i=1}^{r} (\mu+i)(x_{+}^{\mu})_{n} = x_{+}^{\mu+r} * \delta_{n}^{(r)}(x) =$$

$$\int_{1/n}^{1/n} (x-t)^{\mu+r} \delta_{n}^{(r)}(t) dt \quad \text{for} \quad x > 1/, n$$

$$= \begin{cases} \int_{-1/n}^{1/n} (x-t)^{\mu+r} \delta_n^{(r)}(t) dt & \text{for } x > 1/, n \\ \int_{-1/n}^{x} (x-t)^{\mu+r} \delta_n^{(r)}(t) dt & \text{for } -1/n \le x \le 1/n, \\ 0 & \text{for } x < -1/n, \end{cases}$$

where r is a non-negative integer chosen so that $\mu+r>0$. Thus

$$\begin{split} \prod_{i=1}^{r} (\mu+i) \int_{0}^{1} x^{\lambda+m} (x_{+}^{\mu})_{n} \, dx &= \int_{0}^{-1/n} x^{\lambda+m} \int_{-1/n}^{x} (x-t)^{\mu+r} \delta_{n}^{(r)}(t) \, dt \, dx + \\ &+ \int_{1/n}^{1} x^{\lambda+m} \int_{-1/n}^{1/n} (x-t)^{\mu+r} \delta_{n}^{(r)}(t) \, dt \, dx = \\ &= n^{-\lambda-\mu-m-1} \int_{0}^{1} u^{\lambda+m} \int_{-1}^{u} (u-v)^{\mu+r} \varrho^{(r)}(v) \, dv \, du + \\ &+ n^{-\lambda-\mu-m-1} \int_{0}^{n} u^{\lambda+m} \int_{1}^{1} (u-v)^{\mu-r} \varrho^{(r)}(v) \, dv \, du = I_{1} + I_{2}, \end{split}$$

where the substitutions nx=u and nt=v have been made.

Since $\lambda + \mu \neq -1, -2, ...$, we see immediately that I_1 is negligible for m=0, 1, 2, Further

$$\int\limits_{1}^{n}u^{\lambda+m}\int\limits_{-1}^{1}(u-v)^{\mu+r}\varrho^{(r)}(v)\,dv\,du=\int\limits_{-1}^{1}\varrho^{(r)}(v)\int\limits_{1}^{n}u^{\lambda+\mu+r+m}(1-v/u)^{\mu+r}\,du\,dv$$
 and
$$\int\limits_{1}^{n}u^{\lambda+\mu+r+m}(1-v/u)^{\mu+r}\,du=$$

$$\int u^{\lambda+\mu+r+m} (1-v/u)^{\mu+r} du =$$

$$= \int_{1}^{n} u^{\lambda+\mu+r+m} \left[1 - (\mu+r)v/u + \frac{(\mu+r)(\mu+r-1)}{2!} \frac{v^{2}}{u^{2}} - \dots \right] du =$$

$$= n^{\lambda+\mu+r+m+1} \left[\frac{1}{\lambda+\mu+r+m+1} - \frac{(\mu+r)v}{(\lambda+\mu+r+m)n} + \frac{(\mu+r)(\mu+r-1)v^{2}}{2!(\lambda+\mu+r+m-1)n^{2}} - \dots \right] -$$

$$-\left[\frac{1}{\lambda+\mu+r+m+1}-\frac{(\mu+r)v}{\lambda+\mu+r+m}+\ldots\right].$$

It follows that

$$N - \lim_{n \to \infty} I_2 = (-1)^r \prod_{i=1}^r (\mu + i) [r! (\lambda + \mu + m + 1)]^{-1} \int_{-1}^1 v^r \varrho^{(r)}(v) dv =$$

$$= \prod_{i=1}^{r} (\mu+i)/(\lambda+\mu+m+1)$$

and so

$$\int_{0}^{1} x^{\lambda+m} (x_{+}^{\mu})_{n} dx = (\lambda+\mu+m+1)^{-1}$$

for m=0, 1, 2, ...

Now let φ be an arbitrary test function with compact support contained in the interval (a, b). Then

$$(x_{+}^{\lambda}, (x_{+}^{\mu})_{n} \varphi) = \int_{0}^{\infty} x^{\lambda} (x_{+}^{\mu})_{n} \varphi(x) dx = \int_{0}^{1} x^{\lambda} (x_{+}^{\mu})_{n} \left[\varphi(x) - \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m!} x^{m} \right] dx +$$

$$+ \sum_{m=1}^{r-1} \frac{\varphi^{(m)}(0)}{m!} \int_{0}^{1} x^{\lambda+m} (x_{+}^{\mu})_{n} dx + \int_{1}^{\infty} x^{\lambda} (x_{+}^{\mu})_{n} \varphi(x) dx.$$

By Taylor's theorem

$$\varphi(x) - \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m!} x^m = \frac{x^r}{r!} \varphi^{(r)}(\xi x),$$

where $0 \le \xi \le 1$ and so

$$(x_{+}^{\lambda}, (x_{+}^{\mu})_{n} \varphi) = \frac{1}{r!} \int_{0}^{1} x^{\lambda} [x^{r} (x_{+}^{\mu})_{n}] \varphi^{(r)}(\xi x) dx +$$

$$+ \sum_{n=0}^{r-1} \frac{\varphi^{(m)}(0)}{m!} \int_{0}^{1} x^{\lambda+m} (x_{+}^{\mu})_{n} dx + \int_{0}^{\infty} x^{\lambda} (x_{+}^{\mu})_{n} \varphi(x) dx.$$

Since the sequence of continuous functions $\{x^r(x_+^{\mu})_n\}$ converges uniformly to the continuous function $x^{\mu+r}(\mu+r>0)$ on the closed interval [0, 1] and the sequence of continuous functions $\{(x_+^{\mu})_n\}$ converges uniformly to the continuous function x^{μ} on the closed interval $[a, b] \cap [1, \infty)$, it follows that

$$N - \lim_{n \to \infty} \left(x_{+}^{\lambda}, (x_{+}^{\mu})_{n} \varphi \right) = \lim_{n \to \infty} \frac{1}{r!} \int_{0}^{1} x^{\lambda} \left[x^{r} (x_{+}^{\mu})_{n} \right] \varphi^{(r)} (\xi x) \, dx +$$

$$+ N - \lim_{n \to \infty} \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m!} \int_{0}^{1} x^{\lambda + m} (x_{+}^{\mu})_{n} \, dx + \lim_{n \to \infty} \int_{1}^{\infty} x^{\lambda} (x_{+}^{\mu})_{n} \, \varphi(x) \, dx =$$

$$= \frac{1}{r!} \int_{0}^{1} x^{\lambda + \mu} x^{r} \varphi^{(r)} (\xi x) \, dx + \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + \mu + m + 1)} + \int_{1}^{\infty} x^{\lambda + \mu} \varphi(x) \, dx =$$

$$= \int_{0}^{1} x^{\lambda + \mu} \left[\varphi(x) - \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m!} x^{m} \right] dx + \int_{1}^{\infty} x^{\lambda + \mu} \varphi(x) \, dx +$$

$$+ \sum_{m=0}^{r-1} \frac{\varphi^{(m)}(0)}{m! (\lambda + \mu + m + 1)} = (x_{+}^{\lambda + \mu}, \varphi).$$

This proves that the neutrix product $x_{-}^{\lambda} \circ x_{-}^{\mu}$ exists and

$$x_+^{\lambda} \circ x_+^{\mu} = x_+^{\lambda + \mu}$$

for $\lambda > -1$ and $\mu, \lambda + \mu \neq -1, -2, \dots$. Now suppose that the neutrix product $x_+^{\lambda} \circ x_+^{\mu}$ exists and satisfies equation (1) for $-k-1 < \lambda - k$ and $\mu, \lambda + \mu \neq -1, -2, \dots$, where k is a positive integer. Then it follows from theorem 2 that the neutrix product $x_+^{\lambda} \circ x_+^{\mu}$ exists and satisfies

equation (1) for $-k-2 < \lambda < -k-1$ and μ , $\lambda + \mu \ne -1$, -2, ... Since equation (1) is certainly satisfied for $-1 < \lambda < 0$ and μ , $\lambda + \mu \ne -1$, -2, ... the result of the theorem follows by induction. This completes the proof of the theorem.

Corollary 4.1. The neutrix product $x^{\lambda} \circ x^{\mu}$ exists and

$$x^{\lambda}_{-} \circ x^{\mu}_{-} = x^{\mu+\mu}_{-}$$

for λ , μ , $\lambda + \mu \neq -1$, -2, ...

PROOF. The result follows immediately from the theorem on replacing x in equation (1) by -x.

Corollary 4.2. The neutrix products $|x|^{\lambda} \circ |x|^{\mu}$, $(\operatorname{sgn} x \cdot |x|^{\lambda}) \circ (\operatorname{sgn} x \cdot |x|^{\mu})$, $|x|^{\lambda} \circ (\operatorname{sgn} x \cdot |x|^{\mu})$ and $(\operatorname{sgn} x \cdot |x|^{\lambda}) \circ |x|^{\mu}$ exist and

$$|x|^{\lambda} \circ |x|^{\mu} = (\operatorname{sgn} x. |x|^{\lambda}) \circ (\operatorname{sgn} x. |x|^{\mu}) = |x|^{\lambda + \mu},$$

$$|x|^{\lambda} \circ (\operatorname{sgn} x, |x|^{\mu}) = (\operatorname{sgn} x, |x|^{\lambda}) \circ |x|^{\mu} = \operatorname{sgn} x, |x|^{\lambda + \mu}$$

for λ , μ , $\lambda + \mu \neq -1$, -2, ...

PROOF. Since the neutrix product is obviously distributive with respect to addition we have

$$|x|^{\lambda} \circ |x|^{\mu} = (x_{+}^{\lambda} + x_{-}^{\lambda}) \circ (x_{+}^{\mu} + x_{-}^{\mu}) =$$

$$= x_{+}^{\lambda} \circ x_{+}^{\mu} + x_{+}^{\lambda} \circ x_{-}^{\mu} + x_{-}^{\lambda} \circ x_{+}^{\mu} + x_{-}^{\lambda} \circ x_{-}^{\mu} = |x|^{\lambda + \mu}$$

on using theorems 3 and 4 and corollary 4.1.

The other results follows similarly.

Corollary 4.3. The neutrix products $(x+i0)^{\lambda} \circ (x+i0)^{\mu}$ and $(x-i0)^{\lambda} \circ (x-i0)^{\mu}$ exist and

$$(x+i0)^{\lambda} \circ (x+i0)^{\mu} = (x+i0)^{\lambda+\mu},$$

$$(x-i0)^{\lambda} \circ (x-i0)^{\mu} = (x-i0)^{\lambda+\mu}$$

for $\lambda, \mu, \lambda + \mu \neq -1, -2, \dots$

PROOF. The distributions $(x+i0)^{\lambda}$ and $(x-i0)^{\mu}$ are defined by

$$(x+i0)^{\lambda} = x_+^{\lambda} + e^{i\lambda\pi} x_-^{\lambda},$$

$$(x-i0)^{\lambda} = x_+^{\lambda} + e^{-i\lambda\pi} x_-^{\lambda}$$

for $\lambda \neq -1, -2, ...$, see Gelfand and Shilov [7]. The results follow immediately from theorems 3 and 4 and corollary 4.1.

Corollary 4.4. The neutrix products $x_{1}^{+} \circ \delta^{(r)}$ and $\delta^{(r)} \circ x_{+}^{\lambda}$ exist and

$$x_+^{\lambda} \circ \delta^{(r)} = \delta^{(r)} \circ x_+^{\lambda} = 0$$

for $\lambda \neq 0, 1, ..., r, -1, -2, ...$ and r = 0, 1, 2, ...

PROOF. From the theorem we have

$$x_+^{\lambda} \circ H = x_+^{\lambda}$$

for $\lambda \neq -1, -2, ...$, where $H = x_+^0$. It follows from theorems 2 and 4 that the neutrix product $x_{+}^{\lambda} \circ \delta$ exists and

$$x^{\lambda} \circ \delta = 0$$

for $\lambda \neq -1, -2, \dots$ A simple induction argument now proves that

$$x_{+}^{\lambda} \circ \delta^{(r)} = 0$$

for $\lambda \neq -1, -2, ...$ and r = 0, 1, 2, ...

The existence of the neutrix product $\delta^{(r)} \circ x_+^{\lambda}$ follows similarly. The result of this corollary was given in [6].

References

- [1] J. G. VAN DER CORPUT, Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398.
- [2] B. FISHER, The product of distributions. Quart. J. Math. (2), 22 (1971), 291-298.
- [3] B. FISHER, On defining the product of distributions. Math. Nachr. 99 (1980), 239—49.
- [4] B. FISHER, A non-commutative neutrix product of distributions. Math. Nachr. 108 (1982), 117-127.
- [5] B. FISHER, The neutrix distribution product $x_{+}^{\lambda} \circ x_{-}^{\mu}$. Publ. Math. (Debrecen) to appear. [6] B. FISHER, Some neutrix products of distributions, Rostock. Math. Kollog., 22 (1983), 67—79.
- [7] I. M. GELFAND and G. E. SHILOV, Generalized functions, Vol. I, Academic Press (1964). London.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY LEICESTER LEI 7RH **ENGLAND**

(PRESENT ADDRESS)
DEPARTMENT OF MATHEMATICS THE UNIVERSITY LEICESTER LEI 7RH ENGLAND (PERMANENT ADDRESS)
FACULTY OF EDUCATION
TOTTORI UNIVERSITY 101 KOYAMA-CHO-MINAMI 4-CHOME, TOTTORI 680 **JAPAN**

(Received November 2, 1982.)