The neutrix distribution product x?ox*

By BRIAN FISHER and YUKIO KURIBAYASHI (Leicester)

In the following we define the ordinary locally summable functions x%, x%

for A=—1 by

2 for x=0,

: X
S 3{0 for x <0,
0 for x=0,

{(——x)‘1 for x<0.

We define the distributions x4, x* for Ai<=—1 and 1+ —2, —3, ... inductively by
xh = ()Y,
x2 =—(A4+1)"1(x2tYy,

We define the distributions |x|%, sgn x- |x[* for A= —1, =2, ... by

4=

X

Ix|* = x4 +x%, sgnx.x|* = x4 —xt.

It follows that
(Ix[*) = Asgnx. |x|*~Y,

(sgn x. |x|*) = A |x]*-2.

Further, if A>—-r—1,4A#~1, =2, ..., —r and ¢ 1is an arbitrary test function
with compact support, then

1 r=1 m (0) - ol ™ (0)

see GELFAND and SHiLov [7].
The following definition was given in [2].

Definition 1. Let f and g be two distributions for which on the open interval
(a, b), f is the r-th derivative of an ordinary summable function F in L?(a, b)
1.7}

and g is an ordinary summable function in L%a, b) with ;+—=1. Then the

product fg=gf of f and g is defined on the interval (a, b) by

fe= o= 3 (}) - vtzgores,



96 Brian Fisher and Yukio Kuribayashi

where

The next definition was given by van der CorpurT [1].

Definition 2. A neutrix N is a commutative additive group of functions v(¢)
defined on a domain N’ with values in an additive group N”, where further if
for some v in N, w(&)=y for all ¢ in N’, then y=0. The functions in N are
called negligible functions. Now let N’ be a set contained in a topological space
with a limit point » which does not belong to N’. If f(£) is a function defined
on N’ with values in N” and it is possible to find a constant f such that f(&)—f
is negligible in N, then f is called the neutrix limit of /" as ¢ tends to & and we

write
N—lim /() = B,

where the limit # must be unique if it exists.
Now let ¢ be a fixed infinitely differentiable function having the properties

(1) o(x) =0 for |x|=1,
(ii) o(x) =0,
(i) 0(x) = o(—x),
1
(iv) f o(x)dx=1.

-1

We define the function 4, by
J,(x) = n(gnx)

for n=1,2,.... It is obvious that {5,} is a regular sequence of infinitely dif-
ferentiable functions converging to the Dirac delta-distribution §. For an arbitrary
distribution g we define the function g, by

1/n

g(x) =g*5,(0 = [ gx—ns,(n)dr

=1/n

for n=1,2,.... The sequence {g,} is regular and converges to g.
The following definition now extends definition 1 to a wider class of distribu-
tions and was given in [4].

Definition 3. Let f and g be arbitrary distributions and let
8n = E*0,.

We say that the neutrix product fog of f and g exists and is equal to /1 on the
open interval (a, b) if

N—lim (fg,, ¢) = N—lim (f, g,¢) = (h, ¢)
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for all test functions ¢ with compact support contained in the interval (a, b),
where N is the neutrix having domain N'={1,2,...,n,...} and range N” the
real numbers with negligible functions linear sums of the functions

n*In"~'n, In"n

for 2=0 and r=1, 2, ... and all functions of n that converge to zero as n tends
to infinity.

The following theorems are immediate consequences of theorems given in
[3] and [4).

Theorem 1. Let [ and g be distributions. If the product fg exists on the open
interval (a,b) then the neutrix products fog and gof exist and

fog=gof=/g
on this interval.

Theorem 2. Let f and g be distributions and suppose that the neutrix products
fog and fog’ (or f'og) exist on the open interval (a,b). Then the neutrix product
['og (or fog’) exists and

(fog)y =f'og+fog

on this interval.
The next theorem was proved in [5].
Theorem 3. The neutrix products x%ox" and x* ox" exist and
X3 0%k =xtoxt =0
Jor itp#-—1, -2, ....
We now prove the following theorem.
Theorem 4. The neutrix product x" ox*% exists and
(1) x3 oxh = xit*
Jor 4, pu A+pxE—1, —2,....

Proor. We will first of all suppose that A= —1 and put

(x%)n = x4 %4, (x).
Then it follows that

IT (a4 (), = x5 50 (x) =
i=1

1/n
[ Ge=0p*rs (@D dt for x> 1/m

=1/n

[ =0+ 30 @0dt for —1/n=x = 1/n,
—1/n
0 for x<-—1/n,
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where r is a non-negative integer chosen so that p+r=0. Thus

r 1 —1/n x
I i) f x*+men),dx =[xt [ (x—0p*ro () drdx+
Ve 0 0 ~1/n

1 1/n
+ [t [ (e—0p+r a0 () dedx =

1/n =1/n

1 u
- g=h=p=m=1 fu“"' f (u—v)**" o) (v) dvdu+
0 L3

n 1
tumimwmmet fem [y pp=ro® (o) dvdu = I+ 1y,
1 =1

where the substitutions nx=u and nf=v have been made.
Since A+4pu#—1,—2,..., we see immediately that [/, is negligible for
m=0, 1, 2, ... . Further

n 1 1 n
f utm f(u—v)"*'g"’(v) dvdu = fg"’(v) f whterreml — oluy+* dudv
1 =3 =1 1

and
fu“""'”’”'(l —vfu)*+" du =
1
n - 2
= fu“"*'*"‘ll-(p-l—r)v/u-i— (p+r)(;z|+r ) 12— ] du =
: 21 u
o "1+#+r+n+l 1 e (}«l‘l‘!’)ﬂ (,u—{-r](;(-i—r—l)vz =5 ]_
rtut+r+m+1  (A+p+r+m)n 2'(A+p+r+m—1)n* 7

B 1 = (u+r)v + ]
Atu+r+m+1  A+u+r+m )
It follows that

v 1
N—lim I = (=1) [ (u+D[r! G+p+m+1))7 [ v70® (0) dv =
»ere i=1 21

= [T u+D/G+u+m+1)
i=1
and so

1
f xAm(xn), dx = (A+p+m+1)"?
0

for =D
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Now let ¢ be an arbitrary test function with compact support contained in the
interval (a, b). Then

(4. 0) = [ eo@as = [, o 5L e axs

r—1 (Mlo
+...§1 ¢ (' )

f xtm(en), dxt [ x4 (eh), 000 d.
0 1

By Taylor’s theorem

(m
co(x)—Z 970 = x—

m=0 m!
where 0=¢=1 and so

(¥4 (4)s0) = 2 [ 2L (100 @) dx-+
0

P (¢x),

2™(0)

b Ml

fx”"'(x )..dx+f X*H(x%), ¢ (x) dx.

Since the sequence of continuous functions {x"(x%),} converges uniformly to the
continuous function x**"(u+r=0) on the closed interval [0, 1] and the sequence
of continuous functions {(x%),} converges uniformly to the continuous function
x* on the closed interval [a, b]([1, =), it follows that

N—lim (x4, (x4),¢) = lim I— fx‘[f(x’i)..]tp"’(éx)dx+

+N—lim Z fp(""(O) fx“"'(x ),,dx+11rn fx“(x’i)nso(x)dx:
m=0

n—- oo

)0 o
i fxiwx'(;,(r}(sx)dx%- 2‘ T jj.ﬂ-l(‘;‘l+l) lfxlw(p(x)dx =
(m)
= fx"“‘ [(,o(x)— qo (O) x"‘]dx+fx““tp(x)a‘x+
+ :Z_'l o = (x4*" 9).

meo m!(A+pu+m+1)
This proves that the neutrix product x* ox* exists and
Xi0xs = 21"

for A=—1 and p,A+pu=—1, =2, ....

Now suppose that the neutrix product x% ox” exists and satisfies equation (1)
for —k—1<A—-k and p,A4+u=-1,-2,..., where k is a positive integer.
Then it follows from theorem 2 that the neutrix product x%ox% exists and satisfies

™
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equation (1) for —k—2<Ji<—k—1 and u, A4+ pu# —1, —2, .... Since equation (1)
is certainly satisfied for —1<A<0 and pu, A+pu=—1, —2,... the result of the
theorem follows by inducfion. This completes the proof of the theorem.

Corollary 4.1. The neutrix product x* ox" exists and

X2 oxk < gt
Jor i, pu i+pz—1, =2, ...

Proor. The result follows immediately from the theorem on replacing x in
equation (1) by —ux.

Corollary 4.2. The neutrix products |x|*ol|x|*, (sgn x-|x|*)o(sgn x - |x/¥), |x/*o
o(sgn x - |x|*) and (sgn x - |x|*)o|x|* exist and

[x|*c]x|* = (sgn x.|x|*)o(sgn x. |x|*) = |x|*+*,
|x|*o(sgn x. |x|*) = (sgn x. |x|*)o|x|* = sgn x. |x|*+*
for 2, p i+pu#—1, -2, ...

PrOOF. Since the neutrix product is obviously distributive with respect to

addition we have
[x[*olx[* = (x5 +xL)o(x4 +x2) =

= xt oxh +x4 ox" +x2 oxt +xtoxt = |x|A+#

on using theorems 3 and 4 and corollary 4.1.
The other results follows similarly.

Corollary 4.3. The neutrix products (x+i0)*o(x+i0)* and (x—i0)*o(x—i0)*
exist and
(x4 i0)*o(x 4 i0)* = (x+i0)*+*#,

(x—i0)*o(x—i0)* = (x—i0)*++#
for 2, u, A+p=—1, =2, ....
PrOOF. The distributions (x+i0)* and (x—i0)* are defined by
(x+i0)* = x4 +efd=xt
(x—i0)* = x4 +e~=x?

for 2# —1, —2, ..., see GELFAND and SHiILOvV [7]. The results follow immediately
from theorems 3 and 4 and corollary 4.1.

Corollary 4.4. The neutrix products x;j o™ and 6" ox* exist and
x4 06" = §oxt =0
for 40,1, ...,7, =1, =2, ... and r=0,1,2,....
ProOOF. From the theorem we have

xAoH =x%
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for /.7 —1,-2, ..., where H=x%. It follows from theorems 2 and 4 that the
neutrix product x%od exists and

xAo0d=0
for i# —1, =2, .... A simple induction argument now proves that
xto0d" =0

for A£e=]; =2 .. and r=0,1, 2;....

The existence of the neutrix product 6”ox% follows similarly.
The result of this corollary was given in [6].
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