On equivalence of variational problems subject to constraints

By MAGDALEN SZ. KIRKOVITS (Sopron)

1§. Introduction

Let us consider two n-dimensional parameter-invariant variational problems
subject to constraints. The fundamental functions are of the form F(x, x) and
Fix X): ezt 28 o B Rt 2% .0a B,

The variational problems subject to constraints are formulated as follows:
it is required to find curves C and C* respectively joining two given fixed points.
These curves must satisfy some equations of constraint (see [4]) of the form ')

(1.1) G(x, %):= A(X)*=0 (¢=1,2,..., m).
() ()

r
Furthermore C must afford an extreme value to the integral JI= f F(x, x)dt
T,
relative to other curves joining the same points which also satisfy the conditions
rI
(1.1). C* must do the same with respect to J3*= f F*(x, X)dr. It is known (cf.

T
H. Rund [3] page 338) that the extremals of these problems are those solutions of
the Euler—Lagrange equations

(1.2) (a) 6(F+42G) =0 and (b) &,-(F*+)."(G))=0
e e

respectively, which satisfy the conditions (1.1). In these equations A¢ and A*¢ are
unknown constants.

Definition. Two variational problems subject to constraints (1.1) with funda-
mental functions F(x, x) and F*(x, x) respectively, are called equivalent, if the
relations

(1.3) Gi(F+ 4% G)—u(x, X)6(F+2¢ G) = P (x, ) G (x, X);

Pf(x, %) #0, p(x,x)#0

1) Here and in the following Greek indices run from 1 to m, and Einstein-summation con-
vention is applied for Latin and Greek indices too.
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hold identically in (x', X', ¥') with constants ¢, i*¢, & being the Euler—Lagrange
operators:

oo MU 0 o
(1.30) 8= =50 (hi= o 9i:= ).

pu(x, x) and @f(x, x) have to be homogeneous functions of degree zero in X'

It is clear from the definition of the equivalence, that if a curve x(7) satisfies

(?;(x, x)=0 and g,(F+)."(G))=O, then c‘fi(F‘+i.“’(G))=0 holds also, and con-
@ [d

versely. In this paper we investigate the form of the functions u(x, X) and F(x, %),
F*(x, x) satisfying (1.3). At the end of the paper we make some geometrical

remarks.
The author wishes to express her gratitude to Professor A. Moodr for his kind

advices and encouragements.

2§. The independence of u of X'

The relation (1.3) has the explicit form

(2.1) é);F*—iﬂ}F* +A* (9, Ay—dy A)X*—p(x, X)X
dr (o) (

()
X [('); F— ii)}F+i"(D,- A —0 A) .v'c"] = Pf(x, X) A, X
dt (o) (0) ()
Performing the derivations with respect to ¢ and multiplying with (—1) we get:
(2.2) (0; Ok F* —u(x, %) d; 0, F) X+
+ [0 0 F* — p(x, X) 0; 0 F—(2%¢ — pu(x, X) 22) (0; A Oy {f),) +@f (ﬁ,‘] s
XxX¥—0, F*+pu(x, X))o, F = 0.

In the case without constraints H. RUND has already proved that if the relations
&:(F*(x, X))=pu(x, X)&;(F(x, X)) hold identically, then u is necessarily independent
of %/ (see [2]). Since in the identity (2.2) the coefficient of ¥* is the same as in the
case without constraints, so we obtain analogously to H. RunD [2] the relations

(2.3) F*(x, X) = p(x, ) F(x, X)+¢ (x, %),
where
(2.3a) 01 kY = —(F0; s+ (0ip) 0; F+ (i ) i F).

It is evident that (x, X) must be homogeneous of first degree in X'. The method
of H. Runp used in [2] can also be applied for equations of type (2.1). Let
us substitute (2.3) into (2.1). With respect to (2.3a) it reduces to

(2.4) Fou+0,y —

—[F O+ @) Oy F+Dy0) 05 F+; 040 — (25— (x, $)29) (0 A=y AD] ¥ =
e
= of A3
@
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From the homogenity of y it follows

(2.5) Yx, %) = ;(x, )% (= 05 (x, %)),
which also implies that
(2.6) Qb = D, %0,

With the aid of (2.5) and (2.6) we can write (2.4) in the following form:
2.7) -i'k(ai’ibk_ak'!’:] = @7 (gk x* +
+[F 0; 0y pt+ (9 1) O F+ (9 p) 0; F1X* — (A% — pu(x, %) 22) (9, (ﬁa — 0k ({Sa) Xk —Fou.

Let us differentiate this with respect to x/. It follows with respect to B}A,‘EO
2
(2.8) (D j—0,0) + X5 (0, 05— 04 O3 = 950F (gt x*+ of (fgﬂ‘

+[F ;0,051 + (07 F) 00, 1t +(0; 03 10) 0y F+ (i 10) 04, 05 F+ (03, 3 10) 0; F+ (0 10) 930 F]1X* +

e)

+2205u(0; (,‘{* — 0k dg,-)fc" —F0,07n—(0;p) 0} F.
We differentiate (2.3a) with respect to x/ and we calculate the identity d;d, djy =
=d; 0, ;. Substituted this in (2.8); we have
(2.9) (0i) 0; F+ 5 [(Depe) 0; 05 F— (9 1) 0 04 F1 +

1€ " 5 = ) xk : ’ vk =
+ 22051 (0; (‘gk Ok (f).) X"+ @f (/;f}j +0;Pf (ﬁt b
= ai‘l’j _01 Wi+ (0;0) 3} F— (ajﬂ) d;F— F(0; ajﬂ “a} o)+

+(A*— p(x, X)29)(9; Ai=9; AD-

The right hand side is skew-symmetric in (i, j), thus the symmetric part in (i, j)
of the left hand side is identically zero:

(2.10)
ok
%[(t');u) 0; F+(0710) 0, F1+ X* (D ) 0; 03 F— % [} 1) 0; O F+ (0 1) 070, F1+

i :
+ 5 XD, A= A+ Iy A=y AN+

1 1
: e e 4 * e ’ L
+5 (¥ A+ 95 A)+5 (9)9F +0;99) A ¥* = 0.
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After multiplication by 2, we write (2.10) in the following form
@11 FOr[0F— 00 Fs*— 00, F¥*+20(9; A=y A) %1+

+2(x* O+ 3* Oy p) 0; 05 F + ®F AA+¢'§ A,+(a}d>f+a;d>§) ,‘;,: Xt =

= —#(0ip) a{.akr‘{'(aj#)alatf‘ 2(33:.1‘) ainF] ok

RN R @ @ Ak o - o
= — &(0ip) 0; 0 F+ (93 10) 0; 03, F—2(03 ) 0; 05 F).
This can be expressed as
(2.12) né;(F+22 G)+3}M6’-(F+).‘ G)-l-

+2—8ii),F+¢‘? A+ 98 At 0,91 +099) A3t =

= — $*[(050) 95 0 F+(0310) 8 0i F—2(0i0) 9 05 F .

Since @§ are covariant vectors, the left hand side of (2.12) is a tensor, and this
is true also for the coefficient of ¥* on the right hand side. But X* itself is not a vector,
and hence (2.12) can be invariant iff this coefficient vanishes (see [2] page 24), so that

(2.13) 20iu) 0303 F = i) 0y 03 F+ (030 0 03 F.
It is well-known from the Finsler-Geometry that

(2.14) 8 = Ll +hy;,

where

(2.14a) li=0iF; h;= Fo;0;F.

We can write (2.13) after multiplication by F(x, ') in the following form

(2.15) 20kphi; = Oiphj+05u hy.

By contraction of (2.14) by g" with respect to (2.14a) we get

(2.16) h = Fg*0;0;F = &4—1"l;.

In particular, contracting over & and j, we find

(2.17) h} = Fg'0;0;F = 6}— V1, = n—1.

We now multiply (2.15) by g" and since u is homogeneous of degree zero
in X', using (2.17), it is found that

(2.18) 2(n—1) g = ipu (O — ') +o;u(6{— V1) = 2 dyp.
This gives

(2.18a) 2(n—2)dipu = 0.

Excluding the special case n=2, we therefore infer that

(2.19) =0

Thus u is independent of x*.
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We can summarize the result in

'}'heorem 1. 7f (1.3) and (1.1) hold, then for n=2, u is necessarily independent
of X

3§. The explicit form of F and F*

Since according to Theorem 1 u is independent of %', it follows from (2.3a)
on account of the homogenity of y in X, that yY(x, X) must be linear in x*:

(3.1 V(x, %) = S, (x)=~.
Substituting this into (2.3) we find
(3.2) F*(x, X) = p(x) F(x, X)+ S, (x) x*.

Furthermore, let us substitute (3.1) and (3.2) in (2.4). Thus we have
du iz
(3.3) FB,u—EB;F+(3‘Sk—0kS,)x +

F(A ()2 O, A A)S = PF(x, ) A ()3~
From this we get the following theorem:
Theorem 2. If #¢=0;9%(x, %), (ﬁ,:é’, (1;1) (x) and S;=0,S(x) then the funda-
mental function F(x, X) has the form:

e d A(x)
(3.4) F(x, %) = [j_‘;‘] [?.N(x, J'C)—%d’"(x, %) (:;r ]’

where p=pu(x), and @%x, X), N(x, X) are positively homogeneous functions of
first and second degree respectively in X'.

Proor. First we transform the relation (3.3). Differentiating (3.3) with respect
to x/ we have

i
(3.5) (a,-;;)a;r—(aju)a;F—%a;a;-maisj—a,.s,-+
*Q __ 10 =S B e ) A 0 ‘l‘.=
+(4 u(x);t)(ai(ﬁj OJ(.S,) "Di(;i’j 3jd>i(gkx =0.

Now we take the skew-symmetric part in (i, j) of (3.5)

1 1
— — —_ —_—— '. e —_ M ? .k —
5 (PF A= 95 A)— (9,01 — 0 9) A, ()3 =0.
By the assumptions of Theorem 2 this reduces to

o N pa o A g 2
(3?) (r)“u)ﬂjF—((')J,u)B,F—i(B;WBJ (.3—3,45‘3,- (1:)) = 0.
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This can be written in the following form

. 1 - LI ] =
(3.8) 3] [FB,#+5¢°3, (ﬁ] 3;[F8;#+ 3 e/ 3_; (4;; = 0.
From this it follows that Fo;u +% P9, (A) has the form
e
(3.9) Fo;u +% D9, (;l) = J;N(x, X).

Multiplying (3.9) by %/, we obtain with respect to the homogenity of the functions
®¢ and N in x':

(3.10) F-‘-iﬁ+—1-¢°ﬁ=2N(x x)
: dr 2 dt o
Since ﬂ(-;-60, so from (3.10) we get the statement of Theorem 2.

dt
We still calculate the form of F* in case if Theorem 2 holds. Substituting
(3.4) in (3.2) and using S;=0,S(x) we have

-1 d A(x) ds
G1) P9 = (%) 2V 9-F o0 9 -0 )+ 5D

48§. Geometrical remarks
Proposition 1. If S,=0,5(x), u=pu(x) and no constraints exist, then the extremals
of f F*(x, X)dt and f u(x)F(x, x)dt are identical.
PrOOF. Because of (3.2)

@.1) F*(x, %) = p() F(x, )+ 25

dt

F* and uF differ by a total differential. The addition of a total differential to the
integrand evidently cannot affect any extremals, which completes the proof.

Remark: In [1] A. MOOR has shown that if the relations &;(F*(x, X))—
—ué(F(x, X)=0 hold, where pu=const., then S$,=9;S(x) and F‘=;¢F+§
is also satisfied. So in this case f F*dt and f Fdr have identical extremals.

Proposition 2. If along the curve x'=x(1) (A), =0 and ®¢(x, %) (A" (x)=0
e e
then p(x(t))=const.
PrROOF. The symmetric-part in (7, j) of (3.5) always vanishes

du 1 350 % :
ol F o P %, 7 il g k= (.
(4.2) 77 010) F+—={®f A;+ 8§ A)+=(0;9f+0;85) 4, %* =0
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Let us multiply this by g". Using (2.17) we obtain

1. 9 iy 9 d0oii 4 %=

(4.3) F(n—1) = +f A'+ ;08" 4,%=0.
From this, and from the conditions of Proposition 2 it follows

1 dp
(4.9) FOr-D=0
So
4.5) d—'l: =0,
and thus p(x(r))=const.
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