A remark on lattices satisfying the maximum condition

By SANDOR GACSALY] (Debrecen)

In this note we are going to prove the following ?)

Proposition. Let ay<a;<...<a, and by<b<...<b, be two chains of
a lattice satisfying the maximum condition, and let a,, ...,a,, by, ..., b, be join-
irreducible elements. Let moreover be ay|b,. Then a;(\b,=a,(\b, for any pair
of indices (J, k) (f=0, 1, ....r; k=0,1, ..., 5).

First we establish the following

Lemma.
a<c
b<ct=—=allb=c.
a#b

ProoF. We have allb, because, say, a=b(<c) would contradict a<c. Now,
a,b<=alJb because, say, a=alJb<=—=-a=b. At the same time aUb=c, and
here alUb=c¢ cannot hold, because

a,b<=aUb<=c

would contradict our hypothesis. Thus aUb=c.
The Proposition is now capable of the following

PROOF,
(1) aj"bo (J = 0! 19 vivy r)'

Indeed, let j€[l, r]. Then a;#b,, since a;is comparable with a,, while b, is not.
We cannot have a;<b,, since a;<by===a,<b,, in contradiction to a,|b,.
Suppose now by<a; where j=0 is the smallest index for which this inequality

holds. By the maximum condition there exists an element h€L satisfying b,=

=h<a;. Clearly h#a;_,, since by#a;_, and by<h=a;_, would contradict
the choice of j. The Lemma now yields

aJ = hUaj_l,

in contradiction to the join-irreducibility of a;. This establishes (1).

1) This proposition was suggested by Exercise 16. on p. 57 of the book [1], of which we are
also using the terminology and notations. It seemed however necessary to add the condition ay||b,,
while finiteness has been replaced by the maximum condition, and join-irreducibility has been
postulated only for a,;j=0) and b, (k=0).
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Let us remark that in deriving (1) we have used the incomparability of b, with
a,, but nothing else about b,. Accordingly we can replace b, by any element
h of L provided ayl|h, thus obtaining ajlh (j=0,1, ..., 7).

Having established (1), we see that by symmetry

(2) aﬂl]bk (k o 0’ 1, Sa S)

also holds.
Consider now the chains a@,<...<a, and b,<b,<...<b,. Since a,|b,
by (1), we can replace a, by a, in (2):

al"bt (k = 0, 1, iy S).

Again, consider a,<a;<...<a, and b;<...<b,. Since ay|b, by (2), we can
replace b, by b, in (1):
ajlb, (j=0,1,..,0r).

Given a,<...<a, and b,=<...<b,, we infer with the help of a,|b, that
aglb, (k=0,1,...,5).

Starting with a,<a;<...<a, and b,<...<b,, and taking into account
a,/|b,, we obtain
aj"bz (} = 09 ]) sesy l').

Continuing this process, we finally reach a, and 5,<b,<...<b, as well as
ay<ay<...<a, and b,, and we see that

3) alby (G=0,1,...,7; k=0,1,...,9).

Let us now show that
4) aNby=a9 (j=0,1,...,7; k=0,1,...,5).

We cannot have a,<a;Nb,, since this would imply a,<b,, thus contra-
dicting ay|b,.

Suppose now al|(a;Nb,). Replacing b, by a;Mb, in (1), we obtain a,|(a; b))
in contradiction to a;b,=a;. This establishes (4), and by symmetry

) a;Nby = b,.
(4) and (5) together yield
a;Nby = agNb,.

The reverse inequality being trivial, this completes the proof of the proposition.
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