A remark on lattices satisfying the maximum condition

By SÁNDOR GACSÁLYI (Debrecen)

In this note we are going to prove the following 1)

Proposition. Let $a_0 < a_1 < ... < a_r$ and $b_0 < b_1 < ... < b_s$ be two chains of a lattice satisfying the maximum condition, and let $a_1, ..., a_r, b_1, ..., b_s$ be join-irreducible elements. Let moreover be $a_0 || b_0$. Then $a_j \cap b_k = a_0 \cap b_0$ for any pair of indices (j, k) (j = 0, 1, ..., r; k = 0, 1, ..., s).

First we establish the following

Lemma.

$$\begin{array}{l} a < c \\ b < c \\ a \neq b \end{array} \} \Longrightarrow a \cup b = c.$$

PROOF. We have a||b, because, say, a < b(< c) would contradict a < c. Now, $a, b < a \cup b$ because, say, $a = a \cup b < c$ and here $a \cup b < c$ cannot hold, because

$$a, b < a \cup b < c$$

would contradict our hypothesis. Thus $a \cup b = c$.

The Proposition is now capable of the following

PROOF.

(1)
$$a_j \| b_0 \quad (j = 0, 1, ..., r).$$

Indeed, let $j \in [1, r]$. Then $a_j \neq b_0$, since a_j is comparable with a_0 , while b_0 is not. We cannot have $a_j < b_0$, since $a_j < b_0 \Longrightarrow a_0 < b_0$, in contradiction to $a_0 \| b_0$. Suppose now $b_0 < a_j$ where j > 0 is the smallest index for which this inequality holds. By the maximum condition there exists an element $h \in L$ satisfying $b_0 \leq b \leq a_j$. Clearly $b \neq a_{j-1}$, since $b_0 \neq a_{j-1}$ and $b_0 < b \leq a_{j-1}$ would contradict the choice of $b_0 \in a_0$. The Lemma now yields

$$a_j = h \cup a_{j-1}$$

in contradiction to the join-irreducibility of a_i . This establishes (1).

¹⁾ This proposition was suggested by Exercise 16. on p. 57 of the book [1], of which we are also using the terminology and notations. It seemed however necessary to add the condition $a_0||b_0$, while finiteness has been replaced by the maximum condition, and join-irreducibility has been postulated only for $a_j(j>0)$ and b_k (k>0).

Let us remark that in deriving (1) we have used the incomparability of b_0 with a_0 , but nothing else about b_0 . Accordingly we can replace b_0 by any element h of L provided $a_0 || h$, thus obtaining $a_1 || h$ (j=0, 1, ..., r).

Having established (1), we see that by symmetry

(2)
$$a_0 \| b_k \| (k = 0, 1, ..., s)$$

also holds.

Consider now the chains $a_1 < ... < a_r$ and $b_0 < b_1 < ... < b_s$. Since $a_1 || b_0$ by (1), we can replace a_0 by a_1 in (2):

$$a_1 \| b_k \| (k = 0, 1, ..., s).$$

Again, consider $a_0 < a_1 < ... < a_r$ and $b_1 < ... < b_s$. Since $a_0 || b_1$ by (2), we can replace b_0 by b_1 in (1):

$$a_i \| b_1$$
 $(j = 0, 1, ..., r).$

Given $a_2 < ... < a_r$ and $b_2 < ... < b_s$, we infer with the help of $a_2 || b_0$ that

$$a_2 \| b_k \| (k = 0, 1, ..., s).$$

Starting with $a_0 \prec a_1 \prec ... \prec a_r$ and $b_2 \prec ... \prec b_s$, and taking into account $a_0 \parallel b_2$, we obtain

$$a_i \| b_2$$
 $(j = 0, 1, ..., r).$

Continuing this process, we finally reach a_r and $b_0 < b_1 < ... < b_s$ as well as $a_0 < a_1 < ... < a_r$ and b_s , and we see that

(3)
$$a_i \| b_k$$
 $(j = 0, 1, ..., r; k = 0, 1, ..., s).$

Let us now show that

(4)
$$a_j \cap b_k \leq a_0 \quad (j = 0, 1, ..., r; k = 0, 1, ..., s).$$

We cannot have $a_0 < a_j \cap b_k$, since this would imply $a_0 < b_k$, thus contradicting $a_0 || b_k$.

Suppose now $a_0 \| (a_j \cap b_k)$. Replacing b_0 by $a_j \cap b_k$ in (1), we obtain $a_j \| (a_j \cap b_k)$ in contradiction to $a_j \cap b_k \leq a_j$. This establishes (4), and by symmetry

$$(5) a_j \cap b_k \leq b_0.$$

(4) and (5) together yield

$$a_i \cap b_k \leq a_0 \cap b_0$$
.

The reverse inequality being trivial, this completes the proof of the proposition.

Reference

[1] G. Szász, Introduction to Lattice Theory. New York and London, 1963.

(Received January 31, 1983.)