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1. On the euclidean plane R, an ellipse consists of those points P, for which
the distances from two given fixed points F and F* (from the foci) yield a constant
sum 2a. We denote such an ellipse by &,:

(1) e,(F, F*, 2a):= {P|PF+PF* = 2a} (2a > FF* = 2¢),

where PF stands for the euclidean distance of the points P and F. At the same
time every ellipse &, is also the locus of those points whose distances from a fixed
point (from a focus) and from an appropriate line (from the directrix) has a constant
ratio A<1. Let us denote such a curve by &,:

(2) &(F, g, A):= {P % = /}

Let us call these curves ellipse of first and of the second kind respectively. It is well-
known that the two classes of these curves coincide: {e;}={e,} and i=—2-. The

two classes {n,} and {n,} of the hyperbolas of first and second kind can be defined
similarly. On the R, also {n,}= {n.}-

These curves can be defined on a Minkowski plane M,, or on a Finsler plane
Fy, or on a Riemannian plane V, (M,, F,, V; being homeomorphic to a euclidean
plane R,) in the same way as above provided that straight lines are replaced by
geodesics. Prof A. Mo6Rr put the question: in which F, do the two classes {¢,} and
{es}, or {n,} and {n,} coincide, as they do in an R,;? An attempt to determine by
analytic method the fundamental functions of these F, led to complicated calcula-
tions. In what follows we present a solution by synthetic method in an M, and in F,.

2. As known, an indicatrix curve / makes the euclidean plane into a Minkowski-
plane: M,(I). We suppose the indicatrix / to be a bounded, differentiable, central-
symmetric, closed and strictly convex curve. Then / is a Minkowskian unit circle.

Proposition. /f the two classes of the ellipses of first and second kind coincide
on a Minkowski plane, then it is a euclidean plane.
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First we make some preparatory statements and prove some lemmas. A line
r is called perpendicular to another line s:r L s, if the tangents at the intersections
of I and of that straight line which runs parallel to r and goes through the center
0 of I are parallel to s.

Let us consider the line |F, F*| through the foci F, F* of the ellipse & of an M,.
Because of the presupposed equality {¢,}= {e,} it is irrelevant whether ¢ is of the
first or of the second kind. On |F, F*| there lie two points 4 and B of ¢. Let 4 be
the one nearer to F.

Lemma 1. The only nearest point of ¢ to F is A.

Let kr be a Minkowski circle with centre F and radius || F, A||=a—c¢, where
Il , | means the Minkowski distance of the two points occurring in it, and @ and ¢
denote the quantities appearing in (1). Let P be a point in the inside or on the peri-
phery of kp differring from A. Then, because of the triangle inequality valid in the
M,, and of the position of P we have |P, F*|=|P, F| +|F, F*|=a—c+2c=a+c.
However, from the two signs = we have at least once the sign < for every allowed P.
Thus we get | P, F*| =a+c¢. But according to our assumption |P, F|=a—c. The
sum of these relations yields | P, F|+| P, F*|<2a. Therefore no point not farther
from F than a—c lies on & except 4.

Lemma 2. The only nearest point of ¢ to the directrix g is A.

Indeed, let assume that a point P of ¢ different from A4 is not farther from g
than A. Then because of A, Pce

I4,Fl _ ,_ IP,FI
14, gl P, ¢l

3

But |4, F||<| P, F| according to Lemma 1, which together with our assumption
|4, gll=||P. g| contradicts (3).

The foot of a point on a line is the nearest point of the line to the given point.
This point is unique. Let us denote the line |F, F*| by ¢, the intersection point of ¢
and the indicatrix by R.

Lemma 3. The foot of A on g is R.

Let us assume that the foot g4 of 4 on g is not R, and consider the Minkowski
circle k,, with center g, and radius |g4, 4. The tangent &, of this circle at 4
coincides with the tangent e, of ¢ at A. For if these lines were intersecting, then
¢ would have a point nearer to g than A4 in contradiction to Lemma 2. Thus
|84, 4| LEs=e4.

However, we know that the circle kr used in Lemma 1 is in the interior of ¢
except the point 4. In consequence of this the tangents at 4 of ¢ and ky coincide.
So |F,A|=|R,A|=t1le,. This, together with |g,, 4| Le,, means that both
points g4 and R of g lie on 7. Thus g4=R.

Lemmad. ¢1g.

This immediately follows from the fact that the line through a point and through
its foot on a given line is perpendicular to the given line ([1], (17.24)). If this point
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is A, and the given line is g, then according to Lemma 3, R is the foot of 4 on g,
and therefore |4, R|=t1g.

3. We know the existence of such euclidean metrics on the set of points of the
Minkowski plane for which Minkowski geodesics and euclidean straight lines coin-
cide. So called associated euclidean metrics ([1], § 17) are such ones. If M, is defined
as in the first paragraph of section 2, then the euclidean metric used there is asso-
ciated, and all the other associated euclidean metrics are obtained by affine trans-
formations from the first one. In case of associated euclidean metrics Minkowskian
and euclidean parallelity also coincide. We are going to show that in an associated
euclidean metric the indicatrix / is a euclidean ellipse, and thus M,=R, ([1], (17.11)).

Let us consider on the set of points of the M, an associated euclidean metric,
an arbitrary point F and an indicatrix / centered at F. If / is a euclidean circle then
our theorem is true. If it is not, then 7 has a euclidean nearest and a euclidean fartest
point to F. Let these euclidean distances be d, and d, (d;<d,). Consider a eucli-
dean circle p around F with radius d:d,<d<d,. Let us go over by a euclidean
homothety to a euclidean metric where u appears as a unit circle. ¢ has two inter-
section points with 7 not diametrally opposite. Denote the lines joining these points
and F by t and by s respectively. Thus in the directions of f and s the euclidean and
Minkowskian metric coincide.

Let us denote the tangents to / at the intersection points U,, U, of / and ¢ by
h, and h,, and the line parallel to these through F by h. Perform now in our plane
an affine transformation a such that: 1) the points of ¢ are fixpoints of a (i.e. ¢ is an
axis), 2) the image h=ah of h is euclidean perpendicular to ¢, 3) the euclidean mea-
sures of corresponding segments on s and on §=as are equal. We show the exis-
tence of such an affinity. It is well-known that an affinity (on the plane) is uniquely
determined by its axis ¢ and by a pair of corresponding points P¢t and P=aP.
Let P be the common point of s, u and /, and p the line through P parallel to 7, and n
the euclidean perpendicular line to ¢ through F. We denote the intersection point

n
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of hand p by H: h(\p=H, and similarly n(\p=H’. Let us measure the euclidean
dlstance HH’ from P on p, the resulting point being 7, so that the orientation of HH'

and of PP’ should coincide. Draw through P’ a line m euclidean perpedicular to 1.
If P=mNpy exists, then the axis f and the corresponding points P and P already
determine an affinity a with the required property. (In this affinity aH=H lies on
n, and thus h=n.)

We still show that P really exists. 7 lies in the strip between h; and h,. Thus
in the case < (t,s5)= < (¢, h) (as on the figure) P must be between H and Q=p(h,.

Therefore HP<HQ=1. In consequence of this P’ lies between H’ and V=rp,
where r is the line perpendicular to ¢ through U,. Because of such a position of P’
m intersects u. — If < (¢, 5)= < (¢, h) then it is easy to see the truth of the statement.

4. We show that, in the associated euclidean metric introduced at the beginning
of the previous section 3, I=a/ is already a euclidean circle, and therefore / is an
ellipse in the associated euclidean metric.

Let us consider a Minkowski ellipse £ on M, whose main axis and one of its
foci are the line 7, resp. the point F of the previous section. We put eN\t=A4, B;
eNs=R, S. The directrix g of ¢ is Minkowski perpendicular to #:71 g according
to Lemma 4. Since h, is a tangent at U, of the indicatrix centered at F, we have
glhy. a transforms the indicatrix / into an indicatrix I=a/ and it takes the ellipse
¢ of the Minkowski plane M,(/) into the ellipse é=ae of M,(I), for the Min-
kowski distance with respect to / of two arbitrary points K and L equals the Minkows-
ki distance with respect to I of the images of these points: |K, L||;=|aK, aL| .
Denoting the images of points and lines in the affinity a by the same letter provided
with a bar, we obviously have A=A, B=B, R, S¢¢ and we find that g, which is
perpendicular to ¢ according to section 3, is a directrix of & Since in the direction
of ¢t and § the Minkowskian and euclidean units coincide and g is euclidean per-
pendicular to ¢, the points A, B, R, Sare elements of a euclidean ellipse &§* of second
kind dctermmed by F, & and ai, and also of a euclidean ellipse €§ of the first kind

determined by F, F* and 2a= AB=|A, B|; coinciding with &£. We remark that
in view of

_ 4, Fliy _ II/E,FIH AF
I4. 2l 114, 2l Ag

the parameter 4 of &, equals the parameter Z of & and the parameter of §".
From Reéeg & we have

RF+RF* = 4B
IR, Fll7+|R, F*||i = || 4, B||7.

Now, on ¢ and § euclidean and Minkowskian units are the same. Therefore the
right hand sides are equal and so are the first terms of the left hand sides too. From

these we obtain RF*=| R, F*|;. This means the coincidence of euclidean and
Minkowskian units also on the line |R, F*|. The same consideration can be per-
formed for § too. This yields the equivalence of the euclidean and Minkowskian
units also on the line |S, F*|.
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&, is determined by F, R and F*. If we fix F and R, and let F* vary on the open
interval (F, =) of ¢ not containing 4, then we obtain on M,(I) a Minkowskian
ellipse , for any position of F*, the directrix of & being always parallel to g. There-
fore we can perform our above consideration for every & so obtained. Accordingly
the Minkowskian unit is the euclidean unit in the direction of all lines |F*, R| and
|F*, §|, where F*€(F, =). However in this way all directions are obtained. There-
fore I is a euclidean circle, and /=a™[ is a euclidean ellipse in the starting asso-
ciated euclidean metric. Consequently M,=R,.

5. Now we immediately get

Theorem 1. If the two classes of the ellipses of first and second kind coincide on
every plane of a Minkowski space, then it is a euclidean space.

Let L, be an arbitrary plane through the center 0 of /. We know from our
Proposition that in an associated euclidean metric every L,/ is an ellipse. But
in this case 7 is an ellipsoid, as shown in [1], (16.12), and hence M,=R,.

6. The constructions leading to the result of section 4 can be performed in an
arbitrary small domain of the plane, for example in a given neighbourhood of F,
since the image of any ellipse occurring in section 4 subjected to an appropriate
homothetic transformation with center F already lies in the given neighbourhood
of F together with the image of the portion of its directrix used in the construction.

Let us consider a Finsler space F,. This can be approximated with an arbitrary
accuracy by an M, in an appropriately small neighbourhood of any of its points.
If {e,}={es} holds in F,, then it holds in the above neighbourhood of each of its
points and in this neighbourhood the considerations and constructions of section
4 can already be performed. Consequently the indicatrix of such an F, is an ellipse
at every point. Therefore the space is a Riemannian space. Thus we have.

Theorem 2. If the ellipses of the first and second kind of a Finsler plane F,
coincide, then it is a Riemannian plane V.

The case of Riemannian ¥; where {g,}= {&,} will be discussed in a forthcoming
paper.
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