Characterization of integervalued R-additive functions
By J. FEHER (Pécs)

1. Let 9% be the set of natural numbers. For an arbitrary subset SS9 let
S=SU{0}, and |S| be the cardinality of S. We shall write R,=NU {0} (=N).

Let RREN (i=0,1,...). We shall say that {R,, R, ...} is a finite direct
decomposition (FDD) of N, if every n€N can be stated uniquely as

(1.1) R=ry+..+r,, nER, (k=1,..,5s).

We shall say that this FDD is an R-system, if:

a) R, is finite and nonempty,

b) the smallest element of R; is smaller than the smallest element of R; for
every i<j.
We shall say that an R-system is monotonic if the smallest element of R; is larger
than the greatest element of R; for every i<j. "

The sets R;={q", 24", ...,(g—1)¢'} (i=0,1,...) generate the g-ary number-
system, this is a monotonic R-system.

Let f(n) be an arbitrary complex-valued function defined on M,. We shall
say that fis an R-additive function if f(0)=0 and for n€N written in the form
(1.1) we get

(1.2) S(n) = f(ry)+... +f(r).

This is a straightforward generalization of g-additivity that has been introduced
by A. O. GELFOND [1].
For the sake of brevity let

(l) R= Lj Ri?
i=0

2 A; = Ao+ ... +4;4]4;€ RN {0},
T = {hitdiat ... +4h=i+1,i+2, ...; L,€R;N\{0}
The following assertion has been proved in [2] and [3].

Theorem A. Let us be given an R-system and let f be an integervalued R-addi-
tive function. Assume that
(a) the R-system is monotonic, or there exists a suitable prime p for which p{m
holds for infinitely many m¢R;
(b) there exists an index iy such that n|f(n) for every neT;,.
Then f(n)=c-n holds for every n€T,;, where cis a suitable integer.
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2. We shall assume that f, g, fi, ..., fss 815 -++» &s» By, ..., hy are integer-valued
functions, furthermore that M,<M,<...<M, are fixed nonnegative integers.
Let us consider the conditions

(4y) ig;ﬁ(ﬂ‘FMs) = ié; fitM) (modn) (YneN);
(B) é,: a(n+M)=0 (modn) (VneM).

It is clear that 4, with M,=0 is the same as condition (b) in Theorem A.

We shall say that ( fy, ..., f;) is a trivial solution of (4,) if fi(n)=c;n (i=1, ..., )

with integer constans ¢;. Similarly (g;, ..., g) isa trivial solution of (B,) if g,(n)=a;n
]

(i=1, ..., s) withinteger constants ;. It is obvious that in the latter case > a; M;=0.
im]

Theorem 1. If (A,) has a nontrivial solution then so has (B,), and vice versa.
First we shall prove
Lemma 1. Let f be an integer-valued R-additive function. If

(2.1) f(n) = A (mod n)

holds for every ncT,;, then A=0.

PrOOF. Let P be a large integer, P> |A4|. There exists an infinite sequence
Fiys Tiys ... Of integers, r, €R;, (i=1,2,...) such that i,=i,<i,<, ..., and

ri, = zi,(mod P), f(rp)=w(modP) (k=1,2,..),

where z and w are suitable residues mod P. Then the integer

P
N=2r,
belongs to T;,, N=Pz=0 (mod P), f(N)=0 (mod P), consequently P|4 , which
involves that 4=0. [
PrROOF OF THEOREM 1. Let (fy,...,f;) and (hy, ..., h,) be some solutions of
(A); H= 21' hi(M;), F= :Z;ﬁ(M‘)' Then (g, ...,g,) defined by

2.2) gi(n) = Hfi(m)—Fhy(n) (i=1,...5)

is a solution of (B,). If (f;, ...,f,) is a nontrivial solution and (hy, ..., h,) is a
trivial solution such that H>0 (there exists such a solution), then (gy,....g,) is
a nontrivial solution.

To prove the second part of the assertion it is enough to show that for every
solution (g, ..., g,) satisfying (B,) the relation

@3) > g(M) =0
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holds. Indeed, under (2.3) the functions (g, ..., &) give a solution satisfying (4,).
Let iy be such an index for which M4, (i=1, ...,5). From (B,) we get that

2 e == 3 g () (modn)

holds for every n€T;, and so by Lemma 1 applied for f=Jg; we get that (2.3)
holds. 0O

If (g,....8) is a solution of (B,), then (g,(n)+cyn, ..., g (n)+c,n) with
arbitrary integer constants c¢,, ..., ¢, is a solution of (4,). This is a straightforward
consequence of (2.3). Furthermore, if (f;, ..., f;) is a solution of (4,) and the integer
constants ¢y, ..., ¢ are so chosen that 2" ciM;=0, then (fy(n)—cyn, cees fy(M)—4n)

il

is a solution of (4,). Consequently it is enough to characterize the solutions of (B,)
only.

Theorem 2. Let F,g,, ...,8 be integer-valued R-additive functions, 0<M,<
<My<...<M, be fixed integers. Assume that
(o) the R-system is monotonic, or there exists a suitable prime p such that p{m holds
for infinitely many mé€R, and
(B) that the relation

2.4) 3 gi(n+ M) = F(n) (mod n)

holds for every positive integer n.
Then

S g(n+M) = F(n)+en

i=1
identically, with a suitable integer c.

PROOF. Let i, be so large that M €4, holds for every i. Then for n€T; we
get that g,(n+M,)=g;(n)+g,(M,), consequently from (2.4) we deduce that

3 M)+ 3 gi() = F(m) (mod n).
Taking into account Lemma 1 with f=F—g,—...—g,, we get that
3 ai(M) =0,
and so from Theorem A that f(n)=cn, i.e.
@.5) i=2’1 g(N) = F(N)+cN (VNET,).

Let now bEMN, be an arbitrary integer. Let #, be so large that i,=i,, becA,,
b+MgA,; (i=1,...,s5). Let us consider now (2.4) with n=N+b, NeT,. Taking
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into account (2.5) we get immediately that

3 au(b+M) = F()—cN (mod (N+b)),
i.e. that

2.6) > gi(b+M) = F(b)+cb (mod (N+b)) (VNET,).

i=1

Since T, contains arbitrary large elements, we have that

‘2’.; gi(b+M)) = F(b)+ch.

The proof is finished. O

Corollary 1. Let f be an integervalued R-additive function, M=0 be a fixed
integer. Assume that condition (a) in Theorem A holds, and that

2.7 Jf(n+M)=f(M) (modn)

is satisfied for every neN.
Then f(n)=cn for every neN,.

PROOF. Let the integers ¢ and d be so chosen that df(M)=cM. Let g(n)=df(n)—
—cn. From (2.7) we get that g(n+M)=0 (mod n) holds identically, and so from

Theorem 2 (s=1, F=0) that g(n)=0. Consequently f(n):%—n ¢/d is an integer,
since fis an integervalued function. O

Remark. Theorem 2 contains the following special case. If f and g are integer-
valued R-additive functions, M=0 being an integer, furthermore condition (a)
in Theorem A and the relation

gn+M)=f(n) (modn) (VneN)
hold, then

(2.8) gn+ M) = f(n)+cn.

We could give a complete description of the solutions of (2.8) in the case
Ro={1,2, ..., k} [4].

3

Theorem 3. Let the R-system be arbitrary, f; (i=1, ....s) be arbitrary integer-
valued R-additive functions and ¢; (i=1, ...,s) be arbitrary integervalued functions
defined on N,. Assume that

(€ 3 fitn+M) = z oi(M) (mod n)

holds for every n, My, ..., M€MN.
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Then fi(n)=cin, @n)=fi(n)+a;, where c;, a; are integers and Z','a;=0.
i=1
Lemma 2. Let f be an integervalued R-additive function.
Assume that
(3.1) f+K)—f(n+M)=f(K)—f(M) (mod n)

holds for every n, K, MEN.
Then f(n)=cn, c¢ being an integer.

PROOF OF LEMMA 2. Let g(n)= f(n)—f(1)-n. Then g(1)=0, and the require-
ments stated for fin Lemma 2 hold for g too. Let n€MN be arbitrary. Let i, and
iy =i, be so chosen, that n+1€4;, N,and N,beso that N,€T; N A4; and N,ET;.
Let us consider (3.1) with M=N, and K=N,+1. Then we have

3.2 g(n+1)—g(n) =0 (mod (n+ N,)).

Observing that N; can be an arbitrary large number we get that g(n+1)=g(n).
From g(1)=0 we get that g(n)=0 identically. O

PRrROOF OF THEOREM 3. Let M,, ..., M, be fixed. Let i, be so large that M€ 4,
(i=1, ...,s). Then (C,) involves that

=]

3= 3 oMY~ SfiM) (modn) VneT,.

Lemma 1 gives that the right hand side is zero, i.c.

(33) g 2i(M) = 21 fi(M).

(3.3) holds for every choice of M,, ..., M,, therefore ¢;(M)—/fi(M)=¢;(1)—fi(1)
is a constant, i.e.

(3.4 @i(n) = fi(n)+a;, a; integer.
After substituting (3.4) into (C,) we get that

(3.5) iz; filn+M)) = iZ}' ﬁ(Mi)"';; a; (mod n)
holds for every choice of n, M, ..., M,eN. Hence we get immediately that

filn+K)=fi(n+ M) = fi(K)—fi(M) (mod n)

holds for every n, K, MER, i.e. the condition (3.1) holds for f;=f. From Lemma 2
we get that fi(n)=c;n. The assertion >a;=0 is an immediate consequence of
(535 L]

The following assertion is a straightforward consequence of Lemma 2.



170 J. Fehér: Characterization of integervalued R-additive functions

Corollary 2. Let f be an arbitrary integervalued R-additive function. Assume

that
S(n+M) = f(n)+f(M) (mod n)

holds for every n, MEN.
Then f(n)=cn, ¢ being an integer constant.
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