Characterization of integervalued R-additive functions

By J. FEHÉR (Pécs)

1. Let \mathfrak{R} be the set of natural numbers. For an arbitrary subset $S \subseteq \mathfrak{R}$ let $\overline{S} = S \cup \{0\}$, and |S| be the cardinality of S. We shall write $\mathfrak{R}_0 = \mathfrak{R} \cup \{0\}$ $(=\overline{\mathfrak{R}})$. Let $R_i \subseteq \mathfrak{R}$ (i=0,1,...). We shall say that $\{\overline{R}_0,\overline{R}_1,...\}$ is a finite direct decomposition (FDD) of \mathfrak{R}_0 if every $n \in \mathfrak{R}$ can be stated uniquely as

$$(1.1) n = r_{i_1} + ... + r_{i_s}, \quad r_{i_s} \in R_{i_s} \quad (k = 1, ..., s).$$

We shall say that this FDD is an R-system, if:

a) R_i is finite and nonempty,

b) the smallest element of R_i is smaller than the smallest element of R_j for every i < j.

We shall say that an R-system is monotonic if the smallest element of R_j is larger than the greatest element of R_i for every i < j.

The sets $R_i = \{q^i, 2q^i, ..., (q-1)q^i\}$ (i=0, 1, ...) generate the q-ary number-

system, this is a monotonic R-system.

Let f(n) be an arbitrary complex-valued function defined on \mathfrak{N}_0 . We shall say that f is an R-additive function if f(0)=0 and for $n \in \mathfrak{N}$ written in the form (1.1) we get

(1.2)
$$f(n) = f(r_{i_1}) + \dots + f(r_{i_s}).$$

This is a straightforward generalization of q-additivity that has been introduced by A. O. Gelfond [1].

For the sake of brevity let

$$(1) R = \bigcup_{i=0}^{\infty} R_i,$$

(2)
$$A_i = \{\lambda_0 + \dots + \lambda_{i-1} | \lambda_j \in \overline{R}_j\} \setminus \{0\},$$

$$T_i = \{\lambda_i + \lambda_{i+1} + \dots + \lambda_h | h = i+1, i+2, \dots; \lambda_i \in \overline{R}_i\} \setminus \{0\}$$

The following assertion has been proved in [2] and [3].

Theorem A. Let us be given an R-system and let f be an integervalued R-additive function. Assume that

(a) the R-system is monotonic, or there exists a suitable prime $p \nmid m$ holds for infinitely many $m \in R$;

(b) there exists an index i_0 such that $n \mid f(n)$ for every $n \in T_{i_0}$.

Then $f(n)=c \cdot n$ holds for every $n \in T_{i_0}$, where c is a suitable integer.

166 J. Fehér

2. We shall assume that $f, g, f_1, ..., f_s, g_1, ..., g_s, h_1, ..., h_s$ are integer-valued functions, furthermore that $M_1 < M_2 < ... < M_s$ are fixed nonnegative integers. Let us consider the conditions

$$(A_s) \qquad \qquad \sum_{i=1}^s f_i(n+M_i) \equiv \sum_{i=1}^s f_i(M_i) \pmod{n} \quad (\forall n \in \mathfrak{N});$$

$$(B_s) \qquad \sum_{i=1}^s g_i(n+M_i) \equiv 0 \pmod{n} \quad (\forall n \in \mathfrak{R}).$$

It is clear that A_1 with $M_1=0$ is the same as condition (b) in Theorem A. We shall say that (f_1, \ldots, f_s) is a trivial solution of (A_s) if $f_i(n)=c_in$ $(i=1, \ldots, s)$ with integer constants c_i . Similarly (g_1, \ldots, g_s) is a trivial solution of (B_s) if $g_i(n)=a_in$ $(i=1, \ldots, s)$ with integer constants a_i . It is obvious that in the latter case $\sum_{i=1}^{s} a_i M_i = 0$.

Theorem 1. If (A_s) has a nontrivial solution then so has (B_s) , and vice versa. First we shall prove

Lemma 1. Let f be an integer-valued R-additive function. If

$$(2.1) f(n) \equiv A \pmod{n}$$

holds for every $n \in T_{i_0}$, then A = 0.

PROOF. Let P be a large integer, P > |A|. There exists an infinite sequence r_{i_1}, r_{i_2}, \ldots of integers, $r_{i_k} \in R_{i_k}$ $(i=1, 2, \ldots)$ such that $i_0 \le i_1 < i_2 < \ldots$, and

$$r_{i_k} \equiv z_{i_k} \pmod{P}, \quad f(r_{i_k}) \equiv w \pmod{P} \quad (k = 1, 2, ...),$$

where z and w are suitable residues mod P. Then the integer

$$N = \sum_{k=1}^{P} r_{i_k}$$

belongs to T_{i_0} , $N \equiv Pz \equiv 0 \pmod{P}$, $f(N) \equiv 0 \pmod{P}$, consequently P|A, which involves that A=0. \square

PROOF OF THEOREM 1. Let $(f_1, ..., f_s)$ and $(h_1, ..., h_s)$ be some solutions of (A_s) ; $H = \sum_{i=1}^s h_i(M_i)$, $F = \sum_{i=1}^s f_i(M_i)$. Then $(g_1, ..., g_s)$ defined by

(2.2)
$$g_i(n) = Hf_i(n) - Fh_i(n) \quad (i = 1, ..., s)$$

is a solution of (B_s) . If $(f_1, ..., f_s)$ is a nontrivial solution and $(h_1, ..., h_s)$ is a trivial solution such that $H \neq 0$ (there exists such a solution), then $(g_1, ..., g_s)$ is a nontrivial solution.

To prove the second part of the assertion it is enough to show that for every solution $(g_1, ..., g_s)$ satisfying (B_s) the relation

(2.3)
$$\sum_{i=1}^{s} g_i(M_i) = 0$$

holds. Indeed, under (2.3) the functions $(g_1, ..., g_s)$ give a solution satisfying (A_s) . Let i_0 be such an index for which $M_i \in A_{i_0}$ (i=1, ..., s). From (B_s) we get that

$$\sum_{i=1}^{s} g_i(n) \equiv -\sum_{i=1}^{s} g_i(M_i) \pmod{n}$$

holds for every $n \in T_{i_0}$, and so by Lemma 1 applied for $f = \sum g_i$ we get that (2.3) holds. \square

If $(g_1, ..., g_s)$ is a solution of (B_s) , then $(g_1(n)+c_1n, ..., g_s(n)+c_sn)$ with arbitrary integer constants $c_1, ..., c_s$ is a solution of (A_s) . This is a straightforward consequence of (2.3). Furthermore, if $(f_1, ..., f_s)$ is a solution of (A_s) and the integer constants $c_1, ..., c_s$ are so chosen that $\sum_{i \mid 1}^s c_i M_i = 0$, then $(f_1(n)-c_1n, ..., f_s(n)-c_sn)$ is a solution of (A_s) . Consequently it is enough to characterize the solutions of (B_s) only.

Theorem 2. Let $F, g_1, ..., g_s$ be integer-valued R-additive functions, $0 < M_1 < < M_2 < ... < M_s$ be fixed integers. Assume that

(α) the R-system is monotonic, or there exists a suitable prime p such that $p \nmid m$ holds for infinitely many $m \in R$, and

 (β) that the relation

(2.4)
$$\sum_{i=1}^{s} g_i(n+M_i) \equiv F(n) \pmod{n}$$

holds for every positive integer n. Then

$$\sum_{i=1}^{s} g_i(n+M_i) = F(n) + cn$$

identically, with a suitable integer c.

PROOF. Let i_0 be so large that $M_i \in A_{i_0}$ holds for every i. Then for $n \in T_{i_0}$ we get that $g_i(n+M_i)=g_i(n)+g_i(M_i)$, consequently from (2.4) we deduce that

$$\sum_{i=1}^{s} g_{i}(M_{i}) + \sum_{i=1}^{s} g_{i}(n) \equiv F(n) \pmod{n}.$$

Taking into account Lemma 1 with $f=F-g_1-...-g_s$, we get that

$$\sum_{i=1}^{s} g_i(M_i) = 0,$$

and so from Theorem A that f(n)=cn, i.e.

(2.5)
$$\sum_{i=1}^{s} g_i(N) = F(N) + cN \quad (\forall N \in T_{i_0}).$$

Let now $b \in \mathfrak{N}_0$ be an arbitrary integer. Let i_1 be so large that $i_1 \ge i_0$, $b \in A_{i_1}$, $b + M_i \in A_{i_1}$ (i = 1, ..., s). Let us consider now (2.4) with n = N + b, $N \in T_{i_1}$. Taking

168 J. Fehér

into account (2.5) we get immediately that

$$\sum_{i=1}^{s} g_i(b+M_i) \equiv F(b) - cN \pmod{(N+b)},$$

i.e. that

(2.6)
$$\sum_{i=1}^{s} g_i(b+M_i) \equiv F(b)+cb \pmod{(N+b)} \quad (\forall N \in T_{i_1}).$$

Since T_{i_1} contains arbitrary large elements, we have that

$$\sum_{i=1}^{s} g_i(b+M_i) = F(b) + cb.$$

The proof is finished.

Corollary 1. Let f be an integervalued R-additive function, $M \ge 0$ be a fixed integer. Assume that condition (a) in Theorem A holds, and that

$$(2.7) f(n+M) \equiv f(M) \pmod{n}$$

is satisfied for every $n \in \mathfrak{N}$.

Then f(n) = cn for every $n \in \mathfrak{N}_0$.

PROOF. Let the integers c and d be so chosen that df(M)=cM. Let g(n)=df(n)-cn. From (2.7) we get that $g(n+M)\equiv 0 \pmod{n}$ holds identically, and so from Theorem 2 (s=1, F=0) that g(n)=0. Consequently $f(n)=\frac{c}{d}n$ c/d is an integer, since f is an integer valued function. \square

Remark. Theorem 2 contains the following special case. If f and g are integer-valued R-additive functions, $M \ge 0$ being an integer, furthermore condition (a) in Theorem A and the relation

$$g(n+M) \equiv f(n) \pmod{n} \quad (\forall n \in \mathfrak{N})$$

hold, then

$$(2.8) g(n+M) = f(n) + cn.$$

We could give a complete description of the solutions of (2.8) in the case $R_0 = \{1, 2, ..., k\}$ [4].

3.

Theorem 3. Let the R-system be arbitrary, f_i (i=1,...,s) be arbitrary integer-valued R-additive functions and φ_i (i=1,...,s) be arbitrary integervalued functions defined on \Re_0 . Assume that

(C_s)
$$\sum_{i=1}^{s} f_i(n+M_i) \equiv \sum_{i=1}^{s} \varphi_i(M_i) \pmod{n}$$

holds for every $n, M_1, ..., M_s \in \mathfrak{N}$.

Then $f_i(n) = c_i n$, $\varphi_i(n) = f_i(n) + a_i$, where c_i , a_i are integers and $\sum_{i=1}^s a_i = 0$.

Lemma 2. Let f be an integervalued R-additive function. Assume that

$$(3.1) f(n+K)-f(n+M) \equiv f(K)-f(M) \pmod{n}$$

holds for every $n, K, M \in \mathfrak{N}$.

Then f(n)=cn, c being an integer.

PROOF OF LEMMA 2. Let $g(n) = f(n) - f(1) \cdot n$. Then g(1) = 0, and the requirements stated for f in Lemma 2 hold for g too. Let $n \in \mathfrak{N}$ be arbitrary. Let i_0 and $i_1 > i_0$ be so chosen, that $n+1 \in A_{i_0}$, N_1 and N_2 be so that $N_1 \in T_{i_0} \cap A_{i_1}$ and $N_2 \in T_{i_1}$. Let us consider (3.1) with $M = N_2$ and $K = N_2 + 1$. Then we have

(3.2)
$$g(n+1)-g(n) \equiv 0 \pmod{(n+N_1)}$$

Observing that N_1 can be an arbitrary large number we get that g(n+1)=g(n). From g(1)=0 we get that g(n)=0 identically. \square

PROOF OF THEOREM 3. Let $M_1, ..., M_s$ be fixed. Let i_0 be so large that $M_i \in A_{i_0}$ (i=1,...,s). Then (C_s) involves that

$$\sum_{i=1}^s f_i(n) \equiv \sum_{i=1}^s \varphi_i(M_i) - \sum_{i=1}^s f_i(M_i) \pmod{n} \quad \forall n \in T_{i_0}.$$

Lemma 1 gives that the right hand side is zero, i.e.

(3.3)
$$\sum_{i=1}^{s} \varphi_i(M_i) = \sum_{i=1}^{s} f_i(M_i).$$

(3.3) holds for every choice of $M_1, ..., M_s$, therefore $\varphi_i(M) - f_i(M) = \varphi_i(1) - f_i(1)$ is a constant, i.e.

(3.4)
$$\varphi_i(n) = f_i(n) + a_i, \quad a_i \text{ integer.}$$

After substituting (3.4) into (C_s) we get that

(3.5)
$$\sum_{i=1}^{s} f_i(n+M_i) \equiv \sum_{i=1}^{s} f_i(M_i) + \sum_{i=1}^{s} a_i \pmod{n}$$

holds for every choice of $n, M_1, ..., M_s \in \mathbb{N}$. Hence we get immediately that

$$f_i(n+K)-f_i(n+M) \equiv f_i(K)-f_i(M) \pmod{n}$$

holds for every $n, K, M \in \mathfrak{N}$, i.e. the condition (3.1) holds for $f_i = f$. From Lemma 2 we get that $f_i(n) = c_i n$. The assertion $\sum a_i = 0$ is an immediate consequence of (3.5). \square

The following assertion is a straightforward consequence of Lemma 2.

Corollary 2. Let f be an arbitrary integervalued R-additive function. Assume that

$$f(n+M) \equiv f(n)+f(M) \pmod{n}$$

holds for every $n, M \in \mathfrak{N}$.

Then f(n)=cn, c being an integer constant.

Acknowledgement. The author is grateful to I. KATAI for his help in the preparation of this paper.

References

- A. O. GELFOND, Sur les nombres, qui ont des propriétés additives et multiplicatives données, Acta Arithm. 13 (1968), 259—265.
 J. FEHÉR and I. KÁTAI, Some remarks on q-additive and additive functions, Proc. of the Conf.
- in Number Theory held in Budapest (1981).
- [3] J. Fehér, Characterization of generalized q-additive functions, Annales Univ. Budapest, Sec. Math. (in print).
- [4] J. Fehér, On a generalization of q-additive functions, Annales Univ. Budapest, Sec. Math. (in print).

(Received January 26, 1983.)