Quadratic statistics in Hilbert space

By ISTVAN FAZEKAS (Debrecen)

§ 1. Introduction

The object of this paper is to generalize some well known finite dimensional
statistical results to the infinite dimensional case. Our aim is to give a dimension-free
(see GOODMAN and PATHAK [5]) approach to the presented problems. This means
that, where it is possible, we use such uniform methods which give the desired results
in the same way both in the finite dimensional and in the infinite dimensional cases.

In § 2 we list some basic facts on Hilbert space valued random variables. Our sui-
table formulations make possible to obtain the properties of the variance operator
and the sample variance operator in a very simple way.

§ 3 is devoted to a study of characterizations of the Gaussian distribution in
Hilbert space. There are several results on this subject, eg. Goodman and Pathak
present characterizations by linear statistics in [5]. In § 3 we give characterizations
with the help of quadratic and linear statistics.

In §4 the operator loss function for a Hilbert space valued parameter is intro-
duced. The idea of the operator loss function is a simple generalization of the notion
of the matrix loss function (cf. LinNik and RUKHIN [9]). An analogue of the Rao—
Blackwell theorem is proved.

§ 2. Preliminary remarks and notations

Throughout this paper we deal with Hilbert space valued and operator valued
random variables (r. v. ’s) defined on a probability space (2, o, P). Let H denote
a real separable Hilbert space with inner product {(.,.) and norm |.|. The space
of bounded linear operators of H is denoted by L(H) and | .|| is used for the
operator norm. L,(H) denotes the Hilbert space of Hilbert—Schmidt operators
of H (see [8]).

The following definition is valid both for Hilbert valued and for operator valued
r.v.’s.

Definition 2.1. Let Y be a Banach valued r.v. The expectation of Y is defined
by the Bochner integral and is denoted by EY. The conditional expectation of Y has
been defined by Scalora [13] and it is denoted by E(Y |.) (see also [2]).

Definition 2.2. Let x, y€ H. We define the operator x)” of H as follows:

xy'(2) = x(y, 2)
for every z€H.
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Proposition 2.3.
(1 xy'€Ly(H) and |[xy’| =[xyl = |x]|yl,

where | .|| denotes the norm in L,(H).

(2) If {e;}iz, is an orthonormal basis in H, then {e;e}};’;=, is an orthonormal
basis in Ly(H).

One can easily establish the other elementary properties of this operator.

Remark. For x;€H (i=1, ...,n) the n-linear form []'x; of H is defined by
im1

the relation

ijl’x,-(yl. sy V) = .-Ij: E 5 HX

n
where y,€H (i=1,...,n). ]J]” x; is a Hilbert—Schmidt type n-linear form (see [8])
i=1
and for n=2 it can be identified with the operator x, x;.

Definition 2.4. If X and Y are H-valued r.v.’s, then let E(XY’) be the following
operator of H:
(E(XY")a, b) = E{(X, b)(Y, a)}
for every a, b€H.
The covariance operator of X and Y is defined by the relation cov (X, Y)=
=E{(X—EX)Y—EY)}. cov(X,X) is called the variance operator of X and it
is denoted by D%X.

Proposition. 2.5. If E(|X||Y|)<oo, then E(XY’) exists and it is equal to the
Bochner integral of the measurable operator XY’ .

Proor. First we recall that a map A4: Q—L(H) is called a measurable operator,
if the real-valued function (A4a, b) is measurable for every a, b€ H. If the range of
A is in L,(H), then this notion of measurability and the other ones defined in
[6] (p. 74) coincide.

Since (XY’a, b)=(X,b)(Y,a), XY’ is a measurable operator. E(|XY’|)=
=E(|X||Y|)=< shows that XY’ is Bochner integrable. Finally, it is easy to see
that the Bochner integral of XY’ is equal to E(XY").

Remarks. (1) It is easy to see that E(XY’) possesses the same properties as
the finite dimensional second moment operator.
(2) If E|X|*<e and E|Y|*<e, then trace E(XY')=E(X, Y)<<= (see [8]

p. 16.).
By Proposition 2.5. we can immediately prove statistical properties of the
sample variance operator.

Proposition 2.6. Let X,, ..., X, be iid. H-valued rv.s, E|X,|*<e<. Let

(n—1)-18, = (n—n-lig'; X —X)(X,— XY

be the sample variance, where X=n"' 3 X, is the sample mean. Then
i=1
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(1) (n— l)‘1 S, is an unbiased estimator of D* Xj.
(2) n Z X; X[ is an unbiased consistent estimator of E(X, Xj).

3) If Ji’1 is Gaussian, then (n—1)~' S, is an unbiased consistent estimator of
D? X,.

PRrooF. (1) It is a simple consequence of Prop. 2.5.
(2) It follows from the law of large numbers (see [2]).
(3) It is an immediate consequence of Lemma 3.6 and (2).

§ 3. Characterizations of the Gaussian distribution

In this paragraph the Gaussian distribution is characterized by the property
of constant regression of a quadratic statistic on the sample mean. This is an exten-
sion of Theorem 3.1 of CacouLLos [1]. (The characterization of the Gaussian law
in a Hilbert space through the zero regression of two linear statistics was considered
by GOODMAN and PATHAK [5].)

For the proof of the main result, Proposition 3.5, we require the following lemmas.

Lemma 3.1. Let B and F be Banach spaces. Assume that the function
f: BXQ~—F has the following properties: f(x,w) is measurable in @ and f(x,.)

of (x, w)
dx

is Bochner integrable for every fixed x. Suppose that exists and it is

a measurable function of w for every x.

| o (x, ) 1 <h(w) for xe€B, weQ, where h(w) is a real-valued integrable

d f f(x, w) P(dw)
dx

f - P(dw) denotes Bochner integral and d_:;ix) and

2

exists and it is equal to f o (" 2 p(daw).
3f ( X, w)

function, then

denote
Fréchet derivative and Fréchet partial derivative resp.
ProoF. Direct computation (see [3], 8.11.2).

Lemma 3.2. (See [5] Lemma 1.3.) Let X be an H-valued r.v. Denote by ¢y
the characteristic functional of X . If E|X|"<e<o, then ¢y is differentiable n-times
and

d" X T (s i, X
Q;tn(f) = “;__-;{[jgl (IX)]G{' >}’

Proor. Use Lemma 3.1 and induction.

Lemma 3.3. Let X be an H-valued r.v. and let Y be a real-valued rv. and
E|Y|<e. Y has constant regression on X if and only if

(1) E{Ye! "X} = EYE{e!™ X}
for each t€H.

2D
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ProoOF. See [7], 1.1.1 Lemma.

Lemma 3.4. Let B* denote the dual of the Banach space B. Assume that there
exists a countable norm-determining set F in B* (in particular let B be separable).
Let Y bea B-valued r.v.

Y has constant regression on X if and only if the relation (1) holds for all t€ H.

Proor. By the preceding lemma one can easily prove that the following proper-
ties are equivalent.
E{Y |X)=EY as.
E{O* V) X}=E(p*, Y) as. for all y*€F, where (y*,y) denotes the duality
between B and B*
E{(y*,Y)e!" 0} = E(y*, Y)E{e'“*?} for each 1€H, y*cF.
E{Ye'"X)} = EYE{e"X)} for each t€H.

Proposition 3.5. Let X,,...,X, be iid. H-valued rx.’s (n=2) and let
E|\X\[*<o. Let Ay (j,k=1,...,n) be bounded Iinear operators and bjEH (=

=1, ...,n). Supposethat 5 A;j=— 2 Ay and A= ZA_U isinvertible, Zb =0.
Ji=1

i#k Jj=1
Let
= Z AJ-,‘Xin+ ijX
i k=1 j=1
and
A = ZXJ'
Jj=1

Q has constant regression on A (that is E{Q|A}=C, where C is a bounded
linear operator) if and only if X, has a Gaussian distribution.

ProoF. First suppose that E{Q|A}=C. By Lemma 3.4

(2) E{Qe’: M} = CE{e" 4} for t€H.
We then have from Lemma 3.2 that
df(f) hat df@) [df 0] "
-3 4, 22 vor-- 3 4, L2 L0 vor--
3) i 3b; [@] L/@F-* = CLAOY.

where f(¢) denotes the characteristic functional of X,. There exists a neighbourhood
K of 06H such that f(tr)=0 if t€K. Put ¢(t)=In [f(t)], teK. (3) implies that

d? d d
A5 - ;:z(r) 2 2 <p(f)[ o]

iz fe0] 2c, ek
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By the assumptions of the theorem we obtain
L L Ry
= et C, K

d—cj‘:ﬂ:o if teK and s>2.

Therefore the Taylor series expansion of ¢(f) is the following:

Hence

@ 0() = im, ty—5 (D 1), 1€k,

where m=EX, and D=D%X,. Hence the characteristic function of (Xy, h) (h€ H)is

Foxew (@) = exp (im, hyx—— (Dh, hya?)

for some neighbourhood |x|<e of the origin. By Marcinkiewicz’ theorem ([7],
Lemma 24.3) (X;,h) is a Gaussian r.v., thus X; has a Gaussian distribution.
Conversely, if X, has a Gaussian distribution, then ¢(¢)=In[f(7)] satisfies
(4) (where f(t) is the characteristic functional of X;). This implies (2), therefore
O has constant regression on A.
Finally we prove that the independence of the sample mean and the sample
variance is a characteristic property of the Gaussian distribution.

Lemma 3.6. Let X be an H-valued Gaussian r.v. and let X,, ..., X, (n=2)
be a random sample for X. Then there exist independent Gaussian rv.’s Z,, ..., Z,

for which EZ,=0 (i=l,...,n—1) and EZ,=VnEX; D*Z,=DX (i=1l,...,n)
and

n—1
X= n_”zzu’ Sn = 2 Z,-Z:,

i=1

n n
where X=n"' 3 X; is the sample mean and S,= 2 (X;—X)(X;—X) is the
i=1 i=1
sample variance.
PROOF. It can be proved as the corresponding k-dimensional theorem (see [4]).

Proposition 3.7. Let X, ..., X, be a sample for X (n=2). X has a Gaussian
distribution if and only if X and S, are independent.

PrROOF. Suppose that X and S, are independent. Let n;={(X;,y) (i=1,...,n),
where y€H is fixed. We have (X, y)=# and (S, y,»)= 2 (m;—#)®. By Theorem
i=1

4.2.1 of [7] (X, p) is Gaussian, hence X is a Gaussian r.v.
Conversely, if X is a Gaussian r.v., then by Lemma 3.6 X and S, are indepen-
dent.

2e
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§ 4. Operator loss functions

In this paragraph we investigate the estimations of a Hilbert space valued para-
meter. Instead of real-valued loss functions we use operator loss functions. To study
the operator loss function we need the following preliminary lemmas (see [15]).

Lemma 4.1. Let X be a B-valued Bochner integrable r.v. on the probability
space (Q, s, P), where B is a real Banach space with norm | . |.
Then there exists a sequence of measurable partitions F,={A;}in, of Q such

that the following property is satisfied.
If for all i and n a point w,, is chosen from A;, and the simple function X,

is defined as
X(OJ‘,,) if OJEA;,, (i=2, T in)

= {0 if WAy,

then lim X,=X a.s.and iim [|X,~X|dP=0.
N80 n-=co 3

PRrROOF. It can be supposed that B is separable. Let B denote the g-algebra of
Borel sets of B. According to [12] Qy (the distribution of X) is a tight measure on
(B, #). Thus for every n there exists a compact set K, such that Qy(B\K,)<=n".
We can suppose that K,cK,;; (n=1,2,...). There exists a subdivision of K,
into disjoint measurable sets {4/}, such that |[x—y|<n=t if x,pcd;, (i=2,...
wishas B=L2 ) Lt dip=X"YE\K) d L=X"t(Ar) (=D ....L). ket
X, be the function defined in the theorem. Then |X(w)—X,(w)<n~t, w§A4,,
thus Jin; X,=X as.andin L,.

Definition 4.2. Let B and F be real Banach spaces and let C be a positive closed
cone in F. A function f: B—~F is called convex if
Sx+(1=2y) = ¥X)+(1-Df(y) for x,yeB, i€(0,1).
(For u,v€F the relation u=v is defined by v—u€C.)

Lemma 4.3. Let [ be the function defined in 4.2. Assume that f is continuous.
Let X bea B-valued rv.on (Q,o,P). If X and f(X) are Bochner integrable,
then

(5) SE{X|F) = E{f(X)|#} a.s.,
where & is a o-subalgebra of <.
ProOF. It is easy to verify that

FCaXat o+ 2%,) = A fO)+ ...+ A, f (),
white 2B, L6i0, 1) Bl, il B A1,
i=1

in
According to Lemma 4.1 a sequence X,= D' X, 14, of simple functions
> i=1

can be constructed such that lim X,=X and lim f(X,)=f(X) as. and in L,.
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Then
SEXFN = (2 %0 P{AnIF)) =

©) .
= ié;f(xm)P{Ainl‘g} = EU(X,')I-?} a.8.,

because EP{A,-,,I.?}=I a.s. and P{A,|#}=0 a.s. Since the conditional expec-
tation islzlcontinuous mapping of L, into itself ([10], p. 102), nl_l‘IElj E{X,|F}=
=E{X|#} and lim E{f(X,)|F}=E{f(X)#} in L,. If a sequence converges
in L;, then one t;.;n find a subsequence which converges a.s. Therefore (6) implies
(5) because f'is continuous.

Definition 44. Let (Q,4), (©,7) and (4, Z) denote the space of observa-
tions, the space of parameters and the space of decisions respectively. Let P(3, 4)
be a transition probability relative to (@,7 ) and (£,s). Since we want to
investigate the estimation of a parameter belonging to H, we shall assume that
0,4AcH.

An estimator is a measurable mapping é of (£2, &) into (4, Z).

Definition 4.5. Let C denote the positive closed cone of positive self-adjoint
operators in L(H). Let W:L(H)—~L(H) be a continuous, monotone, convex
function. Let W,: ©X4—-L(H) be defined by

W1(8, ) = W[(6—9)(6—9)],

where 0€4 is the estimator of parameter 3€©. W, is called a (monotone, convex)
loss function.

Definition 4.6. (1) The risk of an estimator o is defined by
R;(9) = Eg[W,(9, 9)] = f Wy(8, 0(w)) P(9, dw) (9€O),
0

where the integral is the Bochner integral in L(H).
(2) We say that an estimator 4, is not inferior to &, if R; (3)=R;,(9) for all
JE€O.

Proposition 4.7. Let V be a sufficient statistic for 3. Let T be an estimator of
3, E|T)P<co. Assume that W,(3,T) and W,(9, E(T[V)) are Bochner integrable
in L(H). Then the estimator E(T|V) is not inferior to T.

Proor. It follows from Lemma 4.3 that
EW(T—9(T-91V} = WE(T-HT-9V) as.

It is easy to see that E(XX'|V)=EX V)[E(X|V)] as. if |X|* is Bochner integ-
rable. Since W is monotone these inequalities imply

EWIT—9)(T—9Y1V} = W(E(TV) - S](E{TIV})—-9)) a.s.
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that is
EW,3, TV} =W, (9, E{T|V}) a.s.

Taking expectation on both sides we obtain the desired result.

Remarks. It is easy to see that E{T|V'} is an explicit function of V. If T is
unbiased, then E(T|V) is also an unbiased estimator of 9 and D*T=D*E(T|V).

Definition 4.8. A randomized estimator is a transition probability S=S(w, D)
on (Q, &) and (4, 2). The risk of § is defined by the relation

Rs(9) = [ [Wi(8,0)S(w, do)P(3, dw), 3€O.

2 4

Remark. To study the risk of a randomized estimator we need an analogue
for Banach valued r.v.’s of the Fubini type theorem given in [10] (Prop. III. 2.1).
With the help of Theorem 3.7.13 of [6] one can easily establish this result.

Proposition 4.9. Let W, be an operator loss function and let S be a randomized
estimator. Then the nonrandom estimator s(w)= f 0S(w, dd) is not inferior to S
4

(provided that all integrals involved exist).

Proor. The Fubini theorem mentioned and the method used in the proof of
Prop. 4.7 give the result.
Finally we give a remark in connection with the Stein problem (see Stein [14]).

Proposition 4.10. Let X be an H-valued Gaussian r.v. with known variance
operator D) and unknown expectation 3. Then X is an admissible estimator ([10],
p. 78) of 3 with respect to the operator loss function W,(39,0)=(—3)(0—9).

Proor. If X is not admissible, then there exists an estimator X, better than X.
That is, there exists a h€ H such that (Ry (9)h, h)=(Rx(9)h, h) for 3O and
{Rx,(9)h, h) Z (Rx(9)h, h). Therefore

(7 E((Xy, h)—(3, h))* = E((X, h)— (3, h))* (3€0O)
and
E((Xy, h)—(3, h))* # E((X, h)— (3, h))*.

According to [14] (X, h) is an admissible estimator of (9, h) under quadratic loss.
Thus in (7) equality is valid for 9€0O.
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