On the laxity of rooted trees with vertices of degree three

By ANDRAS ADAM (Budapest)

§ 1. Introduction

The present paper is devoted to studying rooted trees in which each vertex
(except the end vertices) is of degree three. The basic notion of the article is laxity,
this is a number which characterizes the dispersion of the distance of the end vertices
from the root of the tree. (Roughly speaking, the laxity is small if all the end vertices
lie almost at the same distance, it is large when the distances of the end vertices are
strongly different from each other.)

In § 2, mainly the simplest notions concerning the considered trees are introdu-
ced. Certain numerical functions (occurring in the later results) are discussed in the
next section. The laxity is defined in § 4 in a formal manner. After studying the trees
whose laxity is minimal, § 6 presents a perspicuous characterization of laxity. In
§ 7, the trees with maximal laxity are constructed, it is shown that such a tree is
determined uniquely for each (odd) number % of edges, and a formula is obtained
which gives the maximal laxity among the trees having k edges. The question of
enumerating the trivalent trees with respect to their laxity is touched in the last
section.

It seems probable that the present investigations admit a natural extension to
the class of all rooted trees which are regular in the sense that the degree of every
inner vertex of a tree is the same (depending on the tree only).

§ 2. Basic notions

A tree (1.e., a connected finite non-directed graph having no circuit) is called
trivalent if its each vertex is of degree one or of degree three. A vertex P is called an
end vertex if its degree d(P) equals 1, P is an inner vertex otherwise (i.e., if d(P)=3).

It is well-known that when the number of the edges of a tree T is k, then T con-
tains k41 vertices. For trivalent trees, some additional statements are also true:

Proposition 1. Let T be a trivalent tree, denote by k the number of edges of
T. Then

k is an odd number,
T has (k+3)/2 end vertices, and
T has (k—1)/2 inner vertices.
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ProoF. Denote the number of end vertices by x. Then the number of inner
vertices is k+1—x. The equality

2k = x+3(k+1—x)

holds because the left-hand side is the double number of edges and the right-hand
side is the sum of the degrees of the vertices. Hence we get 2x=k+3 and
k+3 k-1
k+1—-x= k+l—T e
k(=2x—3) is odd because x is an integer. Q.E.D.

Let P and Q be two vertices of a tree. Their distance 6(P, Q) is defined as the
length (meant as the number of edges) of the (single) chain between P and Q.

A pair (T, R) is called a rooted tree if R is a vertex of the tree T. The distinguished
vertex R is called the root; we write simply 7 (instead of (7, R))if it is clear that a
root has been selected in the tree.

If P is an arbitrary vertex of a rooted tree (7, R), then the distance &(P, R)
is called the height of P and denoted by v(P). Let us consider an edge e=PQ of T;
it is obvious that

v(P)—v(Q) = 1.

The greater of v(P), v(Q) is called the height v(e) of e. The following assertions are
evident:

If m is positive, then the number of vertices of height m equals the number of
edges of height m.

There is no edge of height zero.

The root R is the only vertex of height zero.

Let T be a rooted tree. The maximal height occurring in 7" is denoted by u(7).
It is obvious that each vertex P fulfilling v(P)=u(T) is an end vertex. (7, R) is
called a solid tree') if v(P)=u(T)—1 for every end vertex P of (T, R). Fig. 1 shows
two solid trees.

We denote by a(n) the number of edges e which satisfy v(e)=n. Let > a(j)
Jj=1
be denoted by t(n).

1) Later (after introducing laxity) the solid trees will also be called trees with laxity zero (cf.
Proposition 6.).
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§ 3. Some numerical functions

For a positive integer n, let a(n), f(n) be defined by a(n)=3-2""' and B(n)=
=3.(2"—1). Let y(n) be the integer 7 which satisfies?)
2t % = o
It is obvious that a(n+1)=2ux(n).
Proposition 2. We have
B(n) = E; (j)-
Proor. We use induction for n. In case n=1, «(1)=3=f(1). Suppose that
the assertion holds for n—1. The deduction
n—1
ﬁ(ﬂ)-}é a(j) = p(n)—=p(n—1) = 32"~ 1)-32"'=1)=3-2""" = a(n)
shows that it is valid for n, too. Q.E.D.
Lemma 1. We have y(n)+1=y(2n) for each n.
Proor. We have defined y(n) by postulating

21m -1 _ % = 27(m)_

Multiply these quantities by two. We get
2n

20 ..3_ = 21(M+1

this means the validity of the lemma. Q.E.D.
Remark. It is easy to see that y(n)=y(n+1) if n(=5) is odd.

Proposition 3. We have y(x(n))=n—1 for each n. If n=4, then «(y(n))
satisfies the following statements:

(i) a(y(m) isof form 3-2,

(i) n2=a(y(m))=<n.

Remark. The statements (i), (ii) determine «(y(n)) uniquely (for a fixed n).
To see this, let m; and m, fulfil (i), (ii) (as «(y(n)) where m,=m,. It follows from
(i) that m,/m,=2. (i) implies m,/my<2.

PROOF OF PRopOSITION 3. The first statement is true since
Hoe@®) =y(3-2"")=n—-1
follows at once from the definitions of «, y.

?) This definition can be written in the from y(n)=[log,(n/3)]* where [x]* is the integer satis-
fying x=[x]*<=x+1.
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Suppose n=4. Then n/3=1, thus y(n)=1 and «(y(n)) is defined. The vali-
dity of (ii) will be proved inductively. In case n=4, itis clear that a(7(4))—oc(]) =3,
Consider an arbitrary n(=35), suppose that (ii) holds for each of 4,5, 6,

n—1 (instead of n). We separate two cases depending on the parity of n.

Case 1. n is even. The induction hypothesis (applied for n/2) implies

% =22 [y [-’2'-]] <n.
2] -6} -

is true (the second equality follows from Lemma 1), (ii) is valid for n.

Since the deduction

Case 2. n is odd. Analogously to the preceding case, we have

n+1 _ n+
3 =23€[ ]]

2 [y ["+1]] [ il—-!-_i +l] =a(y(n+1)) = a(y(n).

(cf. the Remark before Proposition 3). Q.E.D.
Let the function 5 be defined by 5(3)=0 and

and

()

n(n) = Zl(n-S 27)  (n=4).

Lemma 2. We have
n(n)—n(n—1) = y(n)
for each n(=4).

ProoF. The validity of the lemma is obvious when n=4. If n(=4) is of form
3.2'+1, then y(n—1)=y(n)—1, thus

nW—ne-0="3"(-3.2)-"3" (1-1-3.2) =

=n=3.20-03""F " (1=3.2)—(1—1—3-29)) = n—(1—1)+p(n—1) = y ().

J=0
If n is not of form 3-.2'+1, then y(n)=y(n—1), hence

y(n)=1

n(n)—n(n—1) = Z (n=3-2)—(n—1-3-2%) = y(n).
QE.D.
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Proposition 4. We have
n(n) = Jg; 7()
for each n(=3).

ProoF. The statement is verified by induction. 5(3)=0=7y(3) holds clearly.
Suppose that the assertion is true for n—1. Then

290 =100+ 3 90) = 20401 = n(w)

by Lemma 2. Q.E.D.

§ 4. The notion of laxity

Proposition 5. Let T be a trivalent rooted tree and n be a positive integer. Then
og(m)=a(n) and t(n)=p(n).

Remark. The example of a solid tree with f(n) edges shows that a(n) and B(n)
are the best upper bounds.

PROOF OF PROPOSITION 5. It is obvious that ¢(1) equals either 1 or 3(=a(l)).
The number a(n+1) is clearly not greater than 2o0(n). Hence the first inequality
follows by induction (on n). The second inequality is a consequence of the first one
and of Proposition 2. Q.E.D.

Now we introduce the most important notion of this paper. Let 7 be a trivalent
rooted tree, and denote the number of edges T by k. The number
mT=-1 ) r
2 (min (B(j), k)= ()))
J=
e
is called the laxity of T and is denoted by A(T).

4.1

Remarks. Each term occurring in the numerator of (4.1) is non-negative in
consequence of the trivial formula t(j)=k and of the second assertion of Proposi-
tion 5. The upper bound for the summation could also be written as =, because

_ min(B(j), k) = k = (j)
if j=u(T).

We shall see later (Corollary 1) that the laxity is always an integer.

§ 5. Trees with laxity zero

Proposition 6. A trivalent rooted iree T is solid if and only if 2(T)=0.

Proor. Let T be solid. It is clear that o(j)=a(j) and 7(j)=p(j)(<k) hold
when 1=j<u(7T). Hence the laxity ot T is zero.
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Suppose that T is not solid. Let P be an end vertex ot T such that v(P) is minimal
(among the end vertices). By the supposition, v(P)<u(7T)—1. It is easy to see that
o(j)=a(j) if 1=j=v(P) but o(v(P)+1)<u«(v(P)+1). Hence (by Proposition 2
and the definition of 7) t(v(P)+1)<p(v(P)+1). This and the inequality

t(v(P)+1) < of(u(T)) = k

(which follows from v(P)+1<u(T)) implies A(T)=0 (cf. the remarks after (4.1)).
Q.E.D.

Proposition 7. Let T be a solid tree, denote the number of edges of T by k.
Then pu(T)=y(k+3).

ProOF. We use induction on the odd number k. Obviously y(6)=1 and u(7T)
equals 1 if T is the solid tree with 3 edges.
It is evident that

(5.1) 'y(k+3)={

Consider a solid tree T with k+2 edges (k=3). Choose the vertices 4, B,C
so that v(A4)=v(B)=u(T) and C is adjacent to both A4, B. (This choice is always
possible.) Delete 4, B and the edges AC, BC. We get a solid tree T” with k vertices.
u(T)=y(k+3) by the induction hypothesis. It can be seen easily that u(7)=u(7")
unless k is of form 3.2°—3; in the latter case, u(7T)=u(T")+1. Comparing these
inequalities with (5.1), we obtain u(7T)=y(k+35). Q.E.D.

Proposition 8. Let T, k be as in Proposition 7. Among the end vertices of T,
there are

y(k+1)+1 if k is ofform 3.21—1,
y(k+1) otherwise.

(5.2) k+3—o(y(k+3))
vertices of height u(T), and

k+3
(5.3) oy (k+3)———

vertices of height u(T)—1.

Proof. First we verify (5.2). If k=3 or k is of form 3-2'—1, then we show
its validity immediately; in the other cases, we use induction on k.
The tree T with k=3 has 3 end vertices (each of height 1=u(7)) and

3+3—a(y(6)) =6—a(l) =6-3 =3.

Assume that k(=5) is of form 3-2'—1. On the one hand, a(y(k+3))=k+1
by the second sentence of Proposition 3, hence

k+3—a(y(k+3)) = 2.

On the other hand, if we form the tree 7" as in the proof of Proposition 7 (now 7"
has k—2 edges!), then it is easy to see that
(i) every end vertex P of 7" satisfies v(P)=u(T"),
(i) p(T)=pn(T")+1,
(iii) T has exactly two vertices (namely 4 and B) whose height is u(7T).
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Consider now a tree with k+2 edges where k(=35) is not of form 3.2°-3.
Suppose that (5.2) holds for the solid trees with k& edges. Form again 7" as in the
preceding proof. It is clear that u(7)=u(T”). If P is an end vertex of T” whose
height equals u(77), then P satisfies these statements in T, too. In addition, 4 and B
are also end vertices of height u(7) in 7. Thus the number of the end vertices in
question is

24 k4+3—a(y(k+3) = k+5—a(y(k+3)) = k+5—a(y(k+5))

where the second equality is true by (5.1).
We have shown (5.2). The formula (5.3) is an immediate consequence of (5.2)
and the second statement of Proposition 1. Q.E.D.

Example. Figure 2 contains two solid trees with 13 edges which are not iso-
morphic. (Indeed, the distance 6(P, Q) is 6 in the first tree; no distance in the second
tree exceeds 5.)

Fig. 2

§ 6. Characterization of the laxity by transformations

Let T be a trivalent rooted tree with k edges. Choose in it four vertices 4, B, C, D
such that A4, B, D are pairwise different end vertices and the edges AC, BC exist in
T. The following procedure is called an elementary transformation:

(i) we delete the vertices 4, B and the edges AC, BC;

(ii) we add the new vertices 4°, B” and the new edges A’D, B’D to the tree.

The difference v(C)—v(D) is called the weight of the elementary transforma-
tion. It is easy to see that a tree T admits an elementary transformation with positive
weight if and only if T is not solid.

Let

(6.1) B s & ta=1)

be a sequence of trees such that 7} is obtained by an elementary transformation
from T,_; (2=i=q). The sequence (6.1) is then called a rransformation and the
weight of this transformation is defined as the sum of the weights of the ¢—1 ele-
mentary transformations.?) (6.1) is called a positive transformation if each elementary
transformation in it has a positive weight. Starting with an arbitrary tree T, there is

3) If g=1, then the weight of (6.1) is zero.
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at least one transformation which terminates with a solid tree. (Take, for example,
a positive transformation which cannot be continued further.)

Proposition 9. Consider an arbitrary trivalent rooted tree T. Construct a trans-
formation which starts with T and terminates with a solid tree. Then the weight of
this transformation is 2(T).

Proor. We verify the statement by induction on ¢g. If ¢=1, then T itself is
solid and the assertion is trivial (by Proposition 6).

If g=2, then let us denote T by 7, and consider the sequence (6.1). The second
member T, exists and A(73;) equals the weight of the transformation

Tz.. Ts, reey Tq

by the induction hypothesis.

Compare the numerator of (4.1) when it is formed for 7; and for T,. The num-
ber k and the values B(i) do not change. Among the values (), certain ones,
however, will be modified. If v(C)=v(D), then*)

t(v(D)+1), t(v(D)+2), ..., t(v(O))
are greater by two for T, than for 7;. If v(C)<v(D), then
t(v(O)+1), (v(C)+2), ..., 7(v(D))
are greater by two for 7 than for T,. (The other 7(j)’s are unchanged.) We have
in both cases

AMTY—A(T) = v(C)—v(D),
A(TY) = A(T)+ (v(C)—v(D));

thus

the right-hand side here is clearly the weight of the transformation (6.1). Q.E.D.
Corollary 1. The laxity of an arbitrary tree is an integer.

Proor. The statement is an immediate consequence of Proposition 9 and of
the fact that the weight of a transformation is an integer. Q.E.D.

§ 7. Trees with maximal laxity

Let an odd number k be fixed. We construct a rooted tree (7™, R) in the
following manner:

the vertices of 7™ are R, 4,, Ay, ..., Ag1+1y3s Bas By vy Basayses

there exist the edges RA,, A;_, A;, A;_y B; where 2=i=(k+1)/2 (but no
other edge exists).

T® has k edges and is trivalent (see Fig. 3). It is evident that u(7®)=(k+1)/2.

%) We use the notations C and D in the same sense, as at the beginning of the section.
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B, Bs /B(&f)/z/ Brket)f2
Da / / ____________________ =y
A Az A3 Ai)jz  Ales)f2
Fig. 3
Lemma 3. We have
A(TE+D) 5 (T®) = %—y(kﬁ)

for each odd k(=3).
Proor. Define the quantities 2(j, k) and Q(j, k+2) by

Q(@j, k) = min (B(j), k) —t® (j)
Q(j, k+2) = min(B(j), k+2)—*+9(j)
where (k is fixed and) j runs through the integers
1,2, ..., (k+1)/2( = p(T¢+2)—1)

and

and the superscripts in 1 or t**® denote that 7 is meant in the tree 7 of T*+2)
respectively. It is clear that

W(j) = 2j—1 = +9())
for every considered value of j. Thus

0 if B(H=k
(7.1) QU»““)‘QU"‘):{z :f ﬁ(j)gm.

(B(J) is either zero or an odd number, therefore it cannot equal k+1.) The falsity
of the condition P(j)=k+2 can be expressed in the form 3-(2/—1)<k+2, this

inequality being equivalent to 2/<(k+5)/3, i.e., to j<=y(k+5). Hence there are
k+1 k+3

(7.2) ———(k+9)-1) = 2 y+5)
values of j which satisfy the inequalities
p . _k+1
BO) =k+2, j=—3—.
Consequently,
Gt k—1)j2
> QU k+2) 3 923,k
A(T(k+2))_l(r(k)) — i=1 5 ___i=1 ; =

1 (k+1)/2

=712

=1

(Q(f,k+2)—fz(j,k))=%[2 53—3—y(k+5)]].
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(Indeed, the first equality follows from the definitions of 2 and @, the second one
is true because of
Q((k+1)/2, k) = k—k =0,

the third one is a consequence of (7.1) and (7.2).) Q.E.D.
Proposition 10. We have
13) arey = E22 (53]
Jor each odd k(=3).
Proor. We use induction. A(T®)=1 and
3“8—1 _q[3+2-3] el =

show that the assertion is valid for the smallest possible k.
Assume that the statement holds for k; the deduction

A(TCR9) = )(T“")+m—;(k+5) l—q[k+3]+k+3 —yp(k+35) =
B 217
_k 1+84k+12_[q[k+3]+?(k+5]+1] 2 (k+§) - _[n(k;S)H] ®

_ (k+2P-1 [k+5]
= 8 "2

shows its validity for k+2 (where the induction hypothesis and the three lemmas
have been utilized). Q.E.D.

Proposition 11, If T is an arbitrary trivalent rooted tree with k edges, then
MT)=i(T®). Equality holds in this fommla exactly when T and T® are iso-
morphic as rooted trees.

Proor. Consider the definition formula (4.1). Since the quantities k, f(i) are
common for T and T,

S‘ (AOESAT)
AT -iTy =y

is valid where 1, is meant for 7™ and 7, is meant for 7.
The evident formulae
u() =1=1(),

7 (j+1) = min (k, 7, (j) +2)

and
73(j+1) = min (k, 1.:()+2)

imply that the differences 1,(j)—1,(/) are non-negative, therefore i(T™)=i(T).
Suppose that 7 and 7™ are not isomorphic.
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Case 1. The degree of the root of T'is 1. There exists a smallest m(=1) such
that the number of vertices of 7" whose height is m and whose degree is 3 exceeds
one. It is easy to see that T contains exactly two vertices having degree 3 and height
m. Hence

gg(m+1)=4=0g,(m+1)+2

(where the subscripts serve again for the distinction of the two trees), thus
tg(m+1) =1,(m+1)42 = 1,(m+1)
(since 1,(m)=1,(m)). Consequently, A(T™)=i(T).
Case 2. The degree of the root of T'is 3. Then
(1) =3=1=1().
It follows that A(7T®)=A(T) in this case, too. Q.E.D.

§ 8. An enumeration question

In this paper, I did not treat questions of enumerating the trivalent trees. The
enumeration problems have an extensive literature: difficult but powerful techniques
have been elaborated for them (see e.g. [1], [3]). It can be expected that most of
(or all) the problems in question can be solved by specializing some known methods.
However, it would be of interest to discuss (if possible) this particular topic in an
easier manner, than by applying the (somewhat complicated) general theory.

Now I expose the central enumeration question about the trees considered in
this article. Let k(=3) be an odd integer and /4 be a non-negative integer such that
4 does not exceed the right-hand side of the formula (7.3). Take a partition
my+my+my+...+m, of (k+3)/2 such that m,, my, ms, ..., m,_, are non-nega-
tive and m, is positive. Determine the number ¢(my, my, my, ...,m,:2) of the
rooted trivalent trees T (up to isomorphism as rooted trees) for which the following
assertions hold.:

T has k edges,

T contains (exactly) m; end vertices of height i (0=i=p),

the laxity of T is 4.

Concerning the particular case A=0, it follows from Propositions 7, 8 that
@(my, my, ....m,: 0) takes a positive value if and only if

each of my, my, my, ..., m,_, is zero,

m,_, equals the quantity (5.3), and

m, equals the quantity (5.2).

Moreover, it is easy to see that ¢ takes the value 1 if k is of form either 3.2'—5
or3.2~3 or 3.2'—1 (and pu,m,, ..., m, are as above). ¢ can be greater than
one for other (odd) values of k.

4
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