Lie structure in prime rings with derivations

By RAM AWTAR (Ile-Ife)

Abstract

Recently J. BERGEN, L. N. HersTeN and J. W. KERRr [2, Theorem 4] proved that if R is a prime
ring, char R#2, and US Z (the centre of R) is a Lie ideal of R; further if é and d are derivations
of R such that 8d(U)=0, then either d=0 or d=0. A remarkable theorem of HERSTEIN [4,
Theorem 1] of which we have made several uses states: Let R be a semiprime, 2-torsion free ring
and let U be a Lie ideal of R. If r€ R commutes with all tu-ut, w€U, then [r, U]=0. Further,
AWTAR [1, Theorems 1 and 2] proved an interesting result which can be mentioned as follows Let
R be a prime ring, char R#2, and let U be a Lie ideal of R. Let d be a nonzero derivation f R:
such that ud(u)—d(wucZ for all ucU. Moreover, if char R#3 or w*cU for all ucU then
Uc Z. The object of this paper is to extend the above mentioned results, to a more general situa-
tion.

Throughout this paper by ring R we mean an associative ring. The symbol Z
denotes the centre of R. We say that a ring R is semiprime if it contains no nonzero
nilpotent ideals, and R is prime if the nonzero elements of Z are not zero divisors
in R. For x,yeR, we denote [x,y]=xy—yx. An additive subgroup U of R is
said to be a Lie ideal of R if [u,r]eU for all ucU, reR. For any subset 4 of R,
we denote the centralizer of 4 by Cg(A4), and define as follows: Cgr(A)=
={ré R|[a,r]=0 for all ac A}. An additive mapping d from R into itself is said
to be a derivation of R if d(xy)=xd(y)+d(x)y for all x, y€R.

We begin this paper with the following theorem which may have some indepen-
dent interest.

Theorem 1. Let R be a prime ring, char R#2, and let d#0 be a derivation
of R. Suppose that Ud Z is a Lie ideal of R such that d*(U)cZ, and if a€R
is such that d(a)=0 and |a,d(U)]cZ. Then acZ.

Proor. By hypothesis, d*(w)eZ for all ucU. If ucU, reR, then d*[u,rlcZ
and so [d*(w), r1+2[d(u),d(r))+u, d*(r)J€Z. Thus, since d*(u)ceZ for ucU, we
get

(1) 2[d(u), d(r))+[u, d*(r)€Z for all ucU, réeR.
Replace r by rd*(v) where »€U in (1) and expand; then

2[d (), d(r)d*(v) +rd® )]+ [u, d*(r)d* (v) + 2d (r)d® (v) + rd* (V)€ Z,
or,

2[d (u), d(r)}d*(v)+2[d (), r}d®(v)+[u, d* (r)]d* (v) +2[u, d (1)]d® (v) +[u, rld* (V)EZ,
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since d*(v),d*(v) and d*(v) are in Z. From (1) 2[d(u),d(r)]+[u, d*(r)]JéZ and
by hypothesis d*(v)€Z, therefore 2[d(u),d(r)]d*(v)+[u, d*(r)ld*(v)€Z. Hence
from the last equation, we get that

(2) 2[d (u), r]d®(v)+2[u, d (r))d®(v) +[u, r]d*(v)eZ for all w,veU and réR.

In (2) replace r by d(w) where weU to get 2[d(u), d(w)ld*(v)+[u, d(w)]d*(v)EZ.
Write r=w, weU, in (1) then 2[d(u),d(w)]€Z and by hypothesis d*(v)€Z, there-
fore 2[d(u),d(w))d*(v)€Z. Thus we conclude that [u, d(w)ld*(v)€Z for all u, v,
weU. If d*(v)#0 for some v€U, since d*(v)€Z and R is prime, then [u, d(w)]€Z
and so [d(w),[d(w),u]]=0 for all u, weU. By Theorem 1 of [4], [d(w),u]=0
for all w, weU; thatis d(U)cCr(U)=Z by [2, Lemma 2] and so UcZ by [2,
Lemma 6]; a contradiction. Hence d*(U)=0. Thus from (2) we get
2[d(u), rld®(¥)+2[u, d(r))d®(v)eZ; that is {[d(u), r]+[u, d(r)]}d*(¥)€Z and so
dlu,rld*(wv)eZ for u,veU, réR. If &B(v)#0 for some v€U, then dlu,rl€Z
for ucU, reR since d®*(v)€Z and R is prime. Let r=rd*(w) where weU; we get,
since d*(w)eZ, that d([u,r]d*(w))€Z and so d[u, r]d*(w)+[u, rld@*(w)€Z. Since
dlu,rl€Z and d*(w)€Z, then dlu,r]d*(w)eZ. Thus [u,r]d®(w)€Z for all weU,
r€R. As d®(@)(#0)€Z and R is prime, we force that [u,r]€Z; thatis [u, [u, r]]=0
for u€R r€R and so UcZ, by lemma 1.1.9 of [3], a contradiction. Hence
d*(U)=0.

In (1) write r=ra, since d(a)=0, we get on expansion

2[d (u), d(r)la+2d(r)|d (u), al+[u, d*(r)la +d*(r)[u, a]€Z,

{2[d (w), d(N)+[u, d*(N]}a+2d (r)d (u), al +d*()[u, a)€Z.

Commuting the last equation on x where x€ R, since by (1) 2[d(u), d(r)]+[u, d*(r)]€Z
and by hypothesis [a, d(w)]€Z, we get

{2[d (), d ()] +[u, d*(N]}a, x]+2[d (r), x][d (u), a]+[d*(r), x][u, a]
(3) +d*(r)[[u,al,x]=0 for wucU; r, xER.
Replace r by ar in (3) and use (3), since d(a)=0, then
{2[d (w), ald(r)+[u, ald*(r)}a, x]+2[a, x]d(r)[d (), a]+[a, x)d*(r)[u, a] = O
(4) forucU; r,x€R.

or,

Replace r by d(v) in (4) where v€U; since d*(U)=0, d*(U)cZ and [a,d(U)|cZ
we get 4d*(v)[d(u),alla,x)=0 and so d*(v)[d(u), alla,x]=0 for wu,v€U, x€ER.
Let x=xy where yeR; we get that @*(v)[d(u), a]R[a, x]=0. Since R is prime,
then either acZ or d*(v)[d(u), a]=0 for u,veU. If &*(U)=0, since d#0, then
by Theorem 1 of [2] UcZ; a contradiction. So @*(U)=0 therefore the above
relation gives us [d(u), a]=0 for all ucU. By Theorem 2 of [2], since UdZ and
d#0, acZ. Hence acZ. This proves the Theorem.
An immediate consequence of Theorem 1 is the following

Theorem 2. Let R be a prime ring, char R=2, and let U a Lie ideal of R.
Suppose that a€R is such that [a,[a,u]]€Z for all ucU. Then [a, U]=0. More-
over, if UG Z then acZ.
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PROOF. For x€R, let d(x)=[a, x] be an inner derivation of R. Then d(a)=0.
By hypothesis [a,d(w)]€Z and d*(u)eZ for all ucU. If for some weU, [a, u]#0
then d#0 and Ud Z. Hence, by Theorem |1 a€Z, a contradiction. Thus [a, U]l=
=(0). If Ut Z, since [a, U]=0; thatis acCg(U), then by lemma 2 of [2] Cr(U)=
=Z and so acZ.

We are in position to prove the following theorem which extends some due
to HERSTEIN [4, Theorem 1].

Theorem 3. Let R be a semiprime, 2-torsion free ring and let U be a Lie ideal
of R. Suppose that acR is such that [a,[a,u]]€Z for all ucU. Then [a, U]=0.

PRrROOF. Since R is semiprime, then (1) P;=(0) where / is an indexed set and
iel

P; is a prime ideal of R. Thus R;=R/P; is a prime ring of characteristic not equal

to 2, since R is 2-torsion free; and U;=U/P; is a Lie ideal of R;. Since [a,[a, u]]€Z

for all uc U, then [a,[a, u]]€Z; (the centre of R,) for all u,€ U; where a=a+ P£R,.

By Theorem 2, [a, u;]=0 for all ;€ U; and so [a, U] P;. Hence [a, Ul< [ P;=(0).
ier

With this theorem 3 is proved.
We are now proving the key theorem of this paper which generalizes Theorem 2
of [2].

Theorem 4. Let R be a prime ring, char R#2, and let U Z be a Lie ideal of
R. If a€R is such that [a,d(w))€Z for all ucU, where d#0 is a derivation of
R, then acZ.

PROOF. Suppose on the contrary that a¢Z. We claim that d(a)€Z. This we
prove in the same way as in [2]. Let V=[U, UlcU be a Lie ideal of R. It is clear
that, if »€V then d(v)éU. By thypothesis [a,d(v)]€Z for all v»€V. Then,
dla,d(v)]J€eZ and so [d(a),d(v)]+[a,d*(»)]J€Z. But [a,d*(v)]€Z for all vEV,
since d(v)€U; therefore [d(a),d(v)]€Z for all »€V. Replace v by [a,?], then
[d(a),d[a,?]]¢Z and so [d(a),[d(a),v)+[a,d(¥)]]€Z. Since [a,d(v)]€Z, we
conclude that [d(a). [d(a),v]|€Z for all »¢V. Since UdZ, V& Z by lemma 1
of [4]. By Theorem 2, d(a)cZ.

For reR, let «(r)=[a,r] be an inner derivation of R. Then by hypothesis
ad(u)eZ for ucU. For ueU, reR it follows that [u,r]€U and so adu,r]€Z
which yields on expansion

[oed (u), r]+[ex(ue), d ()] +[d (), 2 ()] +[u, 2d (N]EZ,

or,

(n [x (), d(P))+[d(w), (X)) +[u, ad(r)JeZ for all wuc U, reR.
Replace r by xy where x, ye R in (1) to get
[ (), d (x)y + xd (P)]+[d (u), o (x)p + xoe ()] + [, 2d (x)y + 2 (x)d (y) +

+d(x)2(y)+xad(y)IEZ for x, yeR, ucU.

(2

In (2) write x=y=a, since x(a)=0 and d(a)cZ so ad(a)=0, then
2[x(u), ad(@))€ Z: that is [a(u),ald(a)cZ. Thus [a,[a, u]ld(@)¢Z for all weU.
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If d(a)#0, since R is prime and d(a)€Z, we conclude that [a,[a,u]]€Z for all
ucU. By Theorem 2 a€Z; a contradiction. Hence d(a)=0.
Replace y by a in (2), since d(a)=a(a)=0, we get
[x(w), d(x)a]+[d (), x(x)a]+[u, ad (x)a]€ Z,
or,

{loc (), d () +[d (w), ()] + [, od (x)]}a +d (x)[ox (u), a]l+a(x)[d (w), a]+ad (x)[u,al€Z,
or,
{{oe(w), d (x)]+[d (w), o (x)] + [, od (x)]}a —d (x)o* (w) — o (x)od () — od () ()€ Z
3)
for all ucU, x€R.
Commute: (3) with a, as ad(u)€Z and by (1) [x(w), d(x)]+[d (), a(x)] +[u, ad(x)]|€Z,
to get
[d (x), alo® (w) +d (x)[o* (), a]+ [« (x), a)od (w)+[2d (x), a)or () +od (x)[o (), a] = O

or,

@ ad (x)2® (1) +d (x)o® () + o* (x)ad (u) + o*d (x)o (u) 4 od (x)2 (1) = 0

for all u€U, x€R.
Replace u by d(v) in (4) where v€V, as ad(v)EZ so o«*d(v)=0, then
(5) 2 (x)ad?® (v)+o?d (x)xd(v) = 0 for all x€R, veEV.

In (5) replace x by w where we U, then o®(w)ad®*(v)=0 since o?d(w)=0. Asd(v)eU,
ad*(v)€Z for all veV. If ad’(z)#0 for some v€V, then o*(U)=0 since R is
prime. Thus [a,[a,u]]=0 for all ucU and so by Theorem 2 we force that acZ;
a contradiction. Hence ad*(v)=0 for all »€V. Therefore, by (5), a®d(x)xd(v)=0
for all xéR, veV. If ad(v)=[a,d(v)]=0 for all v€V, since V¢ Z and d#0,
by Theorem 2 of [2] we conclude that acZ, a contradiction. Thus ad(¢)#0 and
so from the above we get o’d(x)=0 for x€R, since R is prime and ad(v)EZ.
Replace x by d(x)d(v) where »€V, then

0 = a*d(d (x)d (v)) = *{d*(x)d (v)+d (x)d*(v)} =
= o?d?(x)d (v) + 2xd?® (x)xd (v) + d? (x)23d (v) + o®d (x)d? (v) + 2od (x)xd? (v) + d (x)2*d* (v).

As we have seen above that «*d(R)=0 and ad®(v)=0, therefore from the last
equation we get 2ad*(x)ad(v)=0 and so ad*(x)ad(v)=0 for all xeR, veV. We
have seen above that ad(v)#0, and as it is in the center Z, so ad*(R)=0. Now,
for x€R, ad(x)=[a,d(x)]=d[a, x]=dx(x). Thus ad=dx. Therefore, ada=dx*=
=u2d=0 and dad=d’a=ad*=0.

Since a*d=0, therefore from (4) we get

(6) 2o0d (x)22 () + d (x)o® (w) + o2 (x)xd (u) = 0 for welU, x€R.

Replace u by a(u)=[a,u] and x by ¢, v€U in (3), since ada=0 and ad(U)=
=da(U)cZ, we get

[«2(u), d (v)]a —d (v)2*(u)—ad (v)e*(u)eZ for all w, ve U.
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In (6) replace x by », where »€ U and then adding to the last equation to get
(7 [22(u), d (v)]a +ad (vV)2* (u) +a*(v)ad (W)EZ for u, veEU.
Replace x by a(2) in (3) where €U, as ada=0 and da(v)=ad(v)EZ,
(8) [d (w), o®(v)]a —dx(v)x® (u) —2®(v)2d (W)€ Z for wu,weU.
Adding (7) and (8) to get

(9) {[o® (), d ()] +[d (u), o*(v)]}acZ for all u,veU.

Let r=a(v), »eU in (1); we get, since adx=0 and dx(v)=ad(v)€Z, that
[d(u), «*(v)]J€Z. Replacerbyv, v€U anduby a(u)=[a, u] in (1), then [o*(u),d(v)]€
€Z. After adding these, we have B=[a%(u), d(v)]+[d(u), a®(v)]J€Z. If B0, then
in view of (9) we get acZ; a contradiction. Thus f=0; so

(10) [o2(w), d (v)]+ [d(w), 2*(v)] = 0 for all u,veU.

Replace u by a(«) in (10), then we get [o®*(u), d(v)]=0 for all u, v€U. By Theorem 2
of [2], «*(U)cZ. Let x=d(x) in (6); we get, since ad*=a?d=0, that d*(x)®(u)=0
for xé€R, ucU. If o3(U)#0, as it is in the centre Z, d*=0. However, as proof
of Lemma 1.1.9 of [3] shows. if R is a semiprime, 2-torsion free ring and d is a deri-
vation of R such that ¢*=0 then d=0. Hence «*(U)=0.

Putting w=d(w) in (10) where we€V, since o*d=0, then

(11) [d2(w), a2(v)] =0 for veEU, wev.

Replace x by «*(z), v€U and u by d(w), weV in (2), since da*=0, o*(U)=0
and ad(w)eZ, we have

[@*(w), o* (V) (W] +[d (w), o* (v)2d (V]EZ,
[d*(w), o (V)] (¥) + o (0)[d* (W), o (W] +[d (w), o*(v)]od (¥) +
+o(v)[d(w), ad(¥)]€Z for ve U, weV, yeR.
In view of (11) the last equation reduces to
(12) y = 2 ()[d*(w), a(P)]+[d(w), «*()]od (»)+0*()[d (W), ad (y)]EZ

for all veU,weV and y€R.
Let y=ya in (12); we get, since d(a)=ua(a)=0 and ad*=0,

ya+at(v)ad (p)d(w), alZ,
ya —o?(v)ad (y)ad (w)EZ.

or,

or

Commuting the last equation with d(u), wcU, as y€Z, to get 7la,du)]=
[ (v)ad (y)ed(w), d(u)]=[a*(v)ad(y), d(u)]ed(w). Since y and [a,d(u)] are in Z,
then [o*(v)ad(y), d(u))ad(w)eZ for all u,v€U, weV and ye€R. As we have seen
above that ad(V')=0, and asitisin the center Z, we conclude that [o®(v)ad(y), d(u)]€
€Z for u,veU and yeR. In particular, [d(w),2%(v)] ad(y)+ o2 (v)[d(w), ad(y)EZ
for veU, weV and y€R. Thus, in view of (12) and the last equation, we conclude
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that o*(v)[d*(w), a(y)]€Z for veU, weéV and y€R. In particular, o*(v)[d*(w),
a(w)€Z for u,v€¢U and weV. In (1) replace u by d(w), wéV and r by u, then
[d*(w), x(u)]€Z for weV, ucU. If [d*(w), a(u)] 0, asitisin the center Z, «?(v)eZ
for all »€U since R is prime. That is [a, [a,7])€Z for all »€¢U. By Theorem 2
acZ; a contradiction. Hence [d*(w), a(u)]=0 for all ueU, weV. Since adZ,
then a#0. By Theorem 2 of [2], @*(V)c Z. Thus we have a€ R is such that d(a)=0,
[a.d(V)]cZ and d*(V)cZ where V¢ Z is a Lie ideal of R and d#0 is a deri-
vation of R. So, by Theorem 1, a¢Z. This proves the Theorem.

An immediate consequence of Theorem 4 is the following theorem which
extends Theorem 1 of [2].

Theorem 5. Let R be a prime ring, char R=2, and let U be a Lie ideal of
R. If d#0 is a derivation of R such that d*(U)cZ then UcCZ.

PROOF. Suppose on the contrary that Ud Z. By hypothesis, d*(u)eZ for all
uceU. If wu,v€¢U then d*(u), d*(v)EZ and d?*[u,v]€Z: that is. [d*(u),v)]+
+2[d(u), d(¥)] +[u, d*(v)]J€eZ and so 2[d(u),d(v)]EZ, in consequence of which
we get [d(u),d(v)]€Z for all u, v€U. By Theorem 4 d(U)cZ and so UcCZ by
lemma 6 of [2], a contradiction. Hence UcCZ.

Now we are in position to prove a result which generalizes simultaneously
those of Theorems 2, 4 and 1 of [2].

Theorem 6. Let R be a prime ring, char R+=2, and let U Z be a Lie ideal of
R. Suppose that 6 and d are derivations of R such that éd(U)c Z. Then either
0=0 or d=0.

ProoF. Suppose that d=0 and 6=0. By hypothesis, dd(v)eZ for all ucU.
If ucU, réR then dd[u,r)€Z and dd(u)cZ. Therefore, [dd(u), r14[d(u), o(r)]+
+[0(u), d(r))+[u, dd(r)]€Z; that is [d(u), d(r)]+[0(w), d(r)]+[u, dd(r)]€Z for all
wceU, reR. Replace r by d(v) where v€V, as d(v)eU and dd(U)cZ, we get
[6(w), d*(v)]€Z for all ucU, veV. By theorem 4, d*(V)cZ since d#0. Since
V is a Lie ideal of R and d#0, then by Theorem 5 VcZ and so UCZ, a contra-
diction. Hence either d=0 or 6=0. This completes the proof of Theorem 6.

We are closing this paper by proving the following theorem which extends some
due to Awtar [1, Theorems 1 and 2].

THEOREM 7. Let R be a prime ring of characteristic different from 2. Let d be
a nonzero derivation of R, and U a Lie ideal of R with [u,d(u)€Z for all ucU.
Then UcCZ.

PrOOF. By Lemma 2 of [1], [[d(r), u], u]€Z for all ucU, reR. Its lineariza-
tion on wu=u+d(r) where vEV yields on expansion [[d(r), d(v)], u)+
+[[d(r), u],d(t-‘)]EZ for all ueU, v€V and réR. In particular, [d(r-], [d(»), u]]EZ
forall ueU, veV. If U4 Z, then by Theorem2 d(V)CZ and so VCZ by Lemma
6 of [2]. Thus by lemma 1 of [4] we conclude that UcZ, a contradiction. Hence
UcZ.
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