Lie structure in prime rings with derivations

By RAM AWTAR (Ile-Ife)

Abstract

Recently J. Bergen, I. N. Herstein and J. W. Kerr [2, Theorem 4] proved that if R is a prime ring, char $R \neq 2$, and $U \subseteq Z$ (the centre of R) is a Lie ideal of R; further if δ and d are derivations of R such that $\delta d(U) = 0$, then either $\delta = 0$ or d = 0. A remarkable theorem of Herstein [4, Theorem 1] of which we have made several uses states: Let R be a semiprime, 2-torsion free ring and let U be a Lie ideal of R. If $t \in R$ commutes with all tu-ut, $u \in U$, then [t, U] = 0. Further, AWTAR [1, Theorems 1 and 2] proved an interesting result which can be mentioned as follows Let R be a prime ring, char $R \neq 2$, and let U be a Lie ideal of R. Let d be a nonzero derivation f R: such that $ud(u) - d(u)u \in Z$ for all $u \in U$. Moreover, if char $R \neq 3$ or $u^2 \in U$ for all $u \in U$ then $U \subset Z$. The object of this paper is to extend the above mentioned results, to a more general situation.

Throughout this paper by ring R we mean an associative ring. The symbol Z denotes the centre of R. We say that a ring R is semiprime if it contains no nonzero nilpotent ideals, and R is prime if the nonzero elements of Z are not zero divisors in R. For $x, y \in R$, we denote [x, y] = xy - yx. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$ for all $u \in U$, $r \in R$. For any subset A of R, we denote the centralizer of A by $C_R(A)$, and define as follows: $C_R(A) = \{r \in R | [a, r] = 0 \text{ for all } a \in A\}$. An additive mapping d from R into itself is said to be a derivation of R if d(xy) = xd(y) + d(x)y for all $x, y \in R$.

We begin this paper with the following theorem which may have some independent interest.

Theorem 1. Let R be a prime ring, char $R \neq 2$, and let $d \neq 0$ be a derivation of R. Suppose that $U \subsetneq Z$ is a Lie ideal of R such that $d^2(U) \subsetneq Z$, and if $a \in R$ is such that d(a) = 0 and $[a, d(U)] \subsetneq Z$. Then $a \in Z$.

PROOF. By hypothesis, $d^2(u) \in Z$ for all $u \in U$. If $u \in U$, $r \in R$, then $d^2[u, r] \in Z$ and so $[d^2(u), r] + 2[d(u), d(r)] + [u, d^2(r)] \in Z$. Thus, since $d^2(u) \in Z$ for $u \in U$, we get

(1)
$$2[d(u), d(r)] + [u, d^2(r)] \in \mathbb{Z}$$
 for all $u \in U$, $r \in \mathbb{R}$.

Replace r by $rd^2(v)$ where $v \in U$ in (1) and expand; then

$$2[d(u), d(r)d^2(v) + rd^3(v)] + [u, d^2(r)d^2(v) + 2d(r)d^3(v) + rd^4(v)] \in \mathbb{Z},$$
 or,

 $2[d(u), d(r)]d^{2}(v) + 2[d(u), r]d^{3}(v) + [u, d^{2}(r)]d^{2}(v) + 2[u, d(r)]d^{3}(v) + [u, r]d^{4}(v) \in \mathbb{Z},$

210 R. Awtar

since $d^2(v)$, $d^3(v)$ and $d^4(v)$ are in Z. From (1) $2[d(u), d(r)] + [u, d^2(r)] \in \mathbb{Z}$ and by hypothesis $d^2(v) \in \mathbb{Z}$, therefore $2[d(u), d(r)]d^2(v) + [u, d^2(r)]d^2(v) \in \mathbb{Z}$. Hence from the last equation, we get that

(2) $2[d(u), r]d^3(v) + 2[u, d(r)]d^3(v) + [u, r]d^4(v) \in \mathbb{Z}$ for all $u, v \in U$ and $r \in \mathbb{R}$.

In (2) replace r by d(w) where $w \in U$ to get $2[d(u), d(w)]d^3(v) + [u, d(w)]d^4(v) \in \mathbb{Z}$. Write r=w, $w\in U$, in (1) then $2[d(u),d(w)]\in Z$ and by hypothesis $d^3(v)\in Z$, therefore $2[d(u), d(w)]d^3(v) \in \mathbb{Z}$. Thus we conclude that $[u, d(w)]d^4(v) \in \mathbb{Z}$ for all $u, v, v \in \mathbb{Z}$ $w \in U$. If $d^4(v) \neq 0$ for some $v \in U$, since $d^4(v) \in Z$ and R is prime, then $[u, d(w)] \in Z$ and so [d(w), [d(w), u]] = 0 for all $u, w \in U$. By Theorem 1 of [4], [d(w), u] = 0for all $u, w \in U$; that is $d(U) \subset C_R(U) = Z$ by [2, Lemma 2] and so $U \subset Z$ by [2, Lemma 6]; a contradiction. Hence $d^4(U)=0$. Thus from (2) we get $2[d(u), r]d^3(v) + 2[u, d(r)]d^3(v) \in \mathbb{Z}$; that is $\{[d(u), r] + [u, d(r)]\}d^3(v) \in \mathbb{Z}$ and so $d[u,r]d^3(v)\in Z$ for $u,v\in U, r\in R$. If $d^3(v)\neq 0$ for some $v\in U$, then $d[u,r]\in Z$ for $u \in U$, $r \in R$ since $d^3(v) \in Z$ and R is prime. Let $r = rd^2(w)$ where $w \in U$; we get, since $d^2(w) \in \mathbb{Z}$, that $d([u, r]d^2(w)) \in \mathbb{Z}$ and so $d[u, r]d^2(w) + [u, r]d^3(w) \in \mathbb{Z}$. Since $d[u,r] \in \mathbb{Z}$ and $d^2(w) \in \mathbb{Z}$, then $d[u,r] d^2(w) \in \mathbb{Z}$. Thus $[u,r] d^3(w) \in \mathbb{Z}$ for all $w \in U$, $r \in R$. As $d^3(v) \neq 0 \in Z$ and R is prime, we force that $[u, r] \in Z$; that is [u, [u, r]] = 0for $u \in R$ $r \in R$ and so $U \subset Z$, by lemma 1.1.9 of [3], a contradiction. Hence $d^{3}(U)=0.$

In (1) write r=ra, since d(a)=0, we get on expansion

$$2[d(u), d(r)]a + 2d(r)[d(u), a] + [u, d^{2}(r)]a + d^{2}(r)[u, a] \in \mathbb{Z},$$

or,

$${2[d(u), d(r)]+[u, d^2(r)]}a+2d(r)[d(u), a]+d^2(r)[u, a]\in Z.$$

Commuting the last equation on x where $x \in R$, since by (1) $2[d(u), d(r)] + [u, d^2(r)] \in Z$ and by hypothesis $[a, d(u)] \in Z$, we get

$${2[d(u), d(r)]+[u, d^2(r)]}[a, x]+2[d(r), x][d(u), a]+[d^2(r), x][u, a]$$

(3)
$$+d^2(r)[[u,a],x]=0$$
 for $u \in U$; $r, x \in R$.

Replace r by ar in (3) and use (3), since d(a)=0, then

$${2[d(u), a]d(r) + [u, a]d^2(r)}[a, x] + 2[a, x]d(r)[d(u), a] + [a, x]d^2(r)[u, a] = 0$$

(4) for
$$u \in U$$
; $r, x \in R$.

Replace r by d(v) in (4) where $v \in U$; since $d^3(U) = 0$, $d^2(U) \subset Z$ and $[a, d(U)] \subset Z$ we get $4d^2(v)[d(u), a][a, x] = 0$ and so $d^2(v)[d(u), a][a, x] = 0$ for $u, v \in U$, $x \in R$. Let x = xy where $y \in R$; we get that $d^2(v)[d(u), a]R[a, x] = 0$. Since R is prime, then either $a \in Z$ or $d^2(v)[d(u), a] = 0$ for $u, v \in U$. If $d^2(U) = 0$, since $d \neq 0$, then by Theorem 1 of [2] $U \subset Z$; a contradiction. So $d^2(U) \neq 0$ therefore the above relation gives us [d(u), a] = 0 for all $u \in U$. By Theorem 2 of [2], since $U \not\subset Z$ and $d \neq 0$, $a \in Z$. Hence $a \in Z$. This proves the Theorem.

An immediate consequence of Theorem 1 is the following

Theorem 2. Let R be a prime ring, char $R \neq 2$, and let U a Lie ideal of R. Suppose that $a \in R$ is such that $[a, [a, u]] \in Z$ for all $u \in U$. Then [a, U] = 0. Moreover, if $U \subset Z$ then $a \in Z$.

PROOF. For $x \in R$, let d(x) = [a, x] be an inner derivation of R. Then d(a) = 0. By hypothesis $[a, d(u)] \in Z$ and $d^2(u) \in Z$ for all $u \in U$. If for some $u \in U$, $[a, u] \neq 0$ then $d \neq 0$ and $U \notin Z$. Hence, by Theorem 1 $a \in Z$, a contradiction. Thus [a, U] = (0). If $U \notin Z$, since [a, U] = 0; that is $a \in C_R(U)$, then by lemma 2 of [2] $C_R(U) = Z$ and so $a \in Z$.

We are in position to prove the following theorem which extends some due to Herstein [4, Theorem 1].

Theorem 3. Let R be a semiprime, 2-torsion free ring and let U be a Lie ideal of R. Suppose that $a \in R$ is such that $[a, [a, u]] \in Z$ for all $u \in U$. Then [a, U] = 0.

PROOF. Since R is semiprime, then $\bigcap_{i \in I} P_i = (0)$ where I is an indexed set and P_i is a prime ideal of R. Thus $R_i = R/P_i$ is a prime ring of characteristic not equal to 2, since R is 2-torsion free; and $U_i = U/P_i$ is a Lie ideal of R_i . Since $[a, [a, u]] \in Z$ for all $u \in U$, then $[\bar{a}, [\bar{a}, u_i]] \in Z_i$ (the centre of R_i) for all $u_i \in U_i$ where $\bar{a} = a + P_i \in R_i$. By Theorem 2, $[\bar{a}, u_i] = 0$ for all $u_i \in U_i$ and so $[a, U] \subset P_i$. Hence $[a, U] \subset \bigcap_{i \in I} P_i = (0)$. With this theorem 3 is proved.

We are now proving the key theorem of this paper which generalizes Theorem 2 of [2].

Theorem 4. Let R be a prime ring, char $R \neq 2$, and let $U \not\subset Z$ be a Lie ideal of R. If $a \in R$ is such that $[a, d(u)] \in Z$ for all $u \in U$, where $d \neq 0$ is a derivation of R, then $a \in Z$.

PROOF. Suppose on the contrary that $a \notin Z$. We claim that $d(a) \in Z$. This we prove in the same way as in [2]. Let $V = [U, U] \subset U$ be a Lie ideal of R. It is clear that, if $v \in V$ then $d(v) \in U$. By thypothesis $[a, d(v)] \in Z$ for all $v \in V$. Then, $d[a, d(v)] \in Z$ and so $[d(a), d(v)] + [a, d^2(v)] \in Z$. But $[a, d^2(v)] \in Z$ for all $v \in V$, since $d(v) \in U$; therefore $[d(a), d(v)] \in Z$ for all $v \in V$. Replace v by [a, v], then $[d(a), d[a, v]] \in Z$ and so $[d(a), [d(a), v] + [a, d(v)]] \in Z$. Since $[a, d(v)] \in Z$, we conclude that $[d(a), [d(a), v]] \in Z$ for all $v \in V$. Since $U \oplus Z$, $V \oplus Z$ by lemma 1 of [4]. By Theorem 2, $d(a) \in Z$.

For $r \in R$, let $\alpha(r) = [a, r]$ be an inner derivation of R. Then by hypothesis $\alpha d(u) \in Z$ for $u \in U$. For $u \in U$, $r \in R$ it follows that $[u, r] \in U$ and so $\alpha d[u, r] \in Z$ which yields on expansion

$$[\alpha d(u), r] + [\alpha(u), d(r)] + [d(u), \alpha(r)] + [u, \alpha d(r)] \in Z$$

or,

(1)
$$[\alpha(u), d(r)] + [d(u), \alpha(r)] + [u, \alpha d(r)] \in Z \text{ for all } u \in U, r \in R.$$

Replace r by xy where $x, y \in R$ in (1) to get

In (2) write x=y=a, since $\alpha(a)=0$ and $d(a)\in Z$ so $\alpha d(a)=0$, then $2[\alpha(u), ad(a)]\in Z$; that is $[\alpha(u), a]d(a)\in Z$. Thus $[a, [a, u]]d(a)\in Z$ for all $u\in U$.

212 R. Awtar

If $d(a) \neq 0$, since R is prime and $d(a) \in \mathbb{Z}$, we conclude that $[a, [a, u]] \in \mathbb{Z}$ for all $u \in U$. By Theorem 2 $a \in \mathbb{Z}$; a contradiction. Hence d(a) = 0.

Replace y by a in (2), since $d(a)=\alpha(a)=0$, we get

$$[\alpha(u), d(x)a]+[d(u), \alpha(x)a]+[u, \alpha d(x)a] \in \mathbb{Z},$$

or,

 $\{[\alpha(u), d(x)] + [d(u), \alpha(x)] + [u, \alpha d(x)]\}a + d(x)[\alpha(u), a] + \alpha(x)[d(u), a] + \alpha d(x)[u, a] \in \mathbb{Z},$ or.

$$\{[\alpha(u), d(x)] + [d(u), \alpha(x)] + [u, \alpha d(x)]\}a - d(x)\alpha^{2}(u) - \alpha(x)\alpha d(u) - \alpha d(x)\alpha(u) \in \mathbb{Z}$$
(3)

for all $u \in U$, $x \in R$.

Commute: (3) with a, as $\alpha d(u) \in \mathbb{Z}$ and by (1) $[\alpha(u), d(x)] + [d(u), \alpha(x)] + [u, \alpha d(x)] \in \mathbb{Z}$, to get

 $[d(x), a]\alpha^2(u) + d(x)[\alpha^2(u), a] + [\alpha(x), a]\alpha d(u) + [\alpha d(x), a]\alpha(u) + \alpha d(x)[\alpha(u), a] = 0$ or,

(4)
$$\alpha d(x)\alpha^{2}(u) + d(x)\alpha^{3}(u) + \alpha^{2}(x)\alpha d(u) + \alpha^{2}d(x)\alpha(u) + \alpha d(x)\alpha^{2}(u) = 0$$
 for all $u \in U$, $x \in R$.

Replace u by d(v) in (4) where $v \in V$, as $\alpha d(v) \in Z$ so $\alpha^2 d(v) = 0$, then

(5)
$$\alpha^2(x)\alpha d^2(v) + \alpha^2 d(x)\alpha d(v) = 0 \text{ for all } x \in R, v \in V.$$

In (5) replace x by w where $w \in U$, then $\alpha^2(w)\alpha d^2(v) = 0$ since $\alpha^2 d(w) = 0$. As $d(v) \in U$, $\alpha d^2(v) \in Z$ for all $v \in V$. If $\alpha d^2(v) \neq 0$ for some $v \in V$, then $\alpha^2(U) = 0$ since R is prime. Thus [a, [a, u]] = 0 for all $u \in U$ and so by Theorem 2 we force that $a \in Z$; a contradiction. Hence $\alpha d^2(v) = 0$ for all $v \in V$. Therefore, by (5), $\alpha^2 d(x)\alpha d(v) = 0$ for all $x \in R$, $v \in V$. If $\alpha d(v) = [a, d(v)] = 0$ for all $v \in V$, since $V \oplus Z$ and $d \neq 0$, by Theorem 2 of [2] we conclude that $a \in Z$, a contradiction. Thus $\alpha d(v) \neq 0$ and so from the above we get $\alpha^2 d(x) = 0$ for $x \in R$, since R is prime and $\alpha d(v) \in Z$. Replace x by d(x)d(v) where $v \in V$, then

$$0 = \alpha^2 d(d(x)d(v)) = \alpha^2 \{d^2(x)d(v) + d(x)d^2(v)\} =$$

$$=\alpha^2 d^2(x) d(v) + 2\alpha d^2(x) \alpha d(v) + d^2(x) \alpha^2 d(v) + \alpha^2 d(x) d^2(v) + 2\alpha d(x) \alpha d^2(v) + d(x) \alpha^2 d^2(v).$$

As we have seen above that $\alpha^2 d(R) = 0$ and $\alpha d^2(v) = 0$, therefore from the last equation we get $2\alpha d^2(x)\alpha d(v) = 0$ and so $\alpha d^2(x)\alpha d(v) = 0$ for all $x \in R$, $v \in V$. We have seen above that $\alpha d(v) \neq 0$, and as it is in the center Z, so $\alpha d^2(R) = 0$. Now, for $x \in R$, $\alpha d(x) = [a, d(x)] = d[a, x] = d\alpha(x)$. Thus $\alpha d = d\alpha$. Therefore, $\alpha d\alpha = d\alpha^2 = \alpha^2 d = 0$ and $d\alpha d = d^2\alpha = \alpha d^2 = 0$.

Since $\alpha^2 d = 0$, therefore from (4) we get

(6)
$$2\alpha d(x)\alpha^2(u) + d(x)\alpha^3(u) + \alpha^2(x)\alpha d(u) = 0 \quad \text{for} \quad u \in U, \quad x \in R.$$

Replace u by $\alpha(u)=[a, u]$ and x by v, $v \in U$ in (3), since $\alpha d\alpha = 0$ and $\alpha d(U) = d\alpha(U) \subset Z$, we get

$$[\alpha^2(u), d(v)]a - d(v)\alpha^3(u) - \alpha d(v)\alpha^2(u) \in \mathbb{Z}$$
 for all $u, v \in U$.

In (6) replace x by v, where $v \in U$ and then adding to the last equation to get

(7)
$$[\alpha^2(u), d(v)]a + \alpha d(v)\alpha^2(u) + \alpha^2(v)\alpha d(u) \in Z \text{ for } u, v \in U.$$

Replace x by $\alpha(v)$ in (3) where $v \in U$, as $\alpha d\alpha = 0$ and $d\alpha(v) = \alpha d(v) \in Z$,

(8)
$$[d(u), \alpha^2(v)]a - d\alpha(v)\alpha^2(u) - \alpha^2(v)\alpha d(u) \in Z \text{ for } u, v \in U.$$

Adding (7) and (8) to get

(9)
$$\{[\alpha^2(u), d(v)] + [d(u), \alpha^2(v)]\}a \in \mathbb{Z} \text{ for all } u, v \in \mathbb{U}.$$

Let $r=\alpha(v)$, $v\in U$ in (1); we get, since $\alpha d\alpha=0$ and $d\alpha(v)=\alpha d(v)\in Z$, that $[d(u),\alpha^2(v)]\in Z$. Replace r by $v,v\in U$ and u by $\alpha(u)=[a,u]$ in (1), then $[\alpha^2(u),d(v)]\in Z$. After adding these, we have $\beta=[\alpha^2(u),d(v)]+[d(u),\alpha^2(v)]\in Z$. If $\beta\neq 0$, then in view of (9) we get $a\in Z$; a contradiction. Thus $\beta=0$; so

(10)
$$[\alpha^2(u), d(v)] + [d(u), \alpha^2(v)] = 0 \text{ for all } u, v \in U.$$

Replace u by $\alpha(u)$ in (10), then we get $[\alpha^3(u), d(v)] = 0$ for all u, $v \in U$. By Theorem 2 of [2], $\alpha^3(U) \subset Z$. Let x = d(x) in (6); we get, since $\alpha d^2 = \alpha^2 d = 0$, that $d^2(x)\alpha^3(u) = 0$ for $x \in R$, $u \in U$. If $\alpha^3(U) \neq 0$, as it is in the centre Z, $d^2 = 0$. However, as proof of Lemma 1.1.9 of [3] shows, if R is a semiprime, 2-torsion free ring and d is a derivation of R such that $d^2 = 0$ then d = 0. Hence $\alpha^3(U) = 0$.

Putting u=d(w) in (10) where $w \in V$, since $\alpha^2 d=0$, then

(11)
$$[d^2(w), \alpha^2(v)] = 0 \quad \text{for} \quad v \in U, \quad w \in V.$$

Replace x by $\alpha^2(v)$, $v \in U$ and u by d(w), $w \in V$ in (2), since $d\alpha^2 = 0$, $\alpha^3(U) = 0$ and $\alpha d(w) \in Z$, we have

$$[d^2(w), \alpha^2(v)\alpha(y)] + [d(w), \alpha^2(v)\alpha d(y)] \in \mathbb{Z},$$

or,

$$[d^{2}(w), \alpha^{2}(v)]\alpha(y) + \alpha^{2}(v)[d^{2}(w), \alpha(y)] + [d(w), \alpha^{2}(v)]\alpha d(y) + \alpha^{2}(v)[d(w), \alpha d(y)] \in Z \text{ for } v \in U, w \in V, y \in R.$$

In view of (11) the last equation reduces to

(12)
$$\gamma = \alpha^2(v)[d^2(w), \alpha(y)] + [d(w), \alpha^2(v)]\alpha d(y) + \alpha^2(v)[d(w), \alpha d(y)] \in \mathbb{Z}$$

for all $v \in U$, $w \in V$ and $y \in R$.

Let y=ya in (12); we get, since $d(a)=\alpha(a)=0$ and $\alpha d^2=0$,

$$\gamma a + \alpha^2(v) \alpha d(y) [d(w), a] \in \mathbb{Z},$$

or

$$\gamma a - \alpha^2(v) \alpha d(v) \alpha d(w) \in \mathbb{Z}$$
.

Commuting the last equation with d(u), $u \in U$, as $\gamma \in Z$, to get $\gamma[a, d(u)] = [\alpha^2(v)\alpha d(y)\alpha d(w), d(u)] = [\alpha^2(v)\alpha d(y), d(u)]\alpha d(w)$. Since γ and [a, d(u)] are in Z, then $[\alpha^2(v)\alpha d(y), d(u)]\alpha d(w) \in Z$ for all $u, v \in U$, $w \in V$ and $y \in R$. As we have seen above that $\alpha d(V) \neq 0$, and as it is in the center Z, we conclude that $[\alpha^2(v)\alpha d(y), d(u)] \in Z$ for $u, v \in U$ and $y \in R$. In particular, $[d(w), \alpha^2(v)] \alpha d(y) + \alpha^2(v)[d(w), \alpha d(y)] \in Z$ for $v \in U$, $w \in V$ and $y \in R$. Thus, in view of (12) and the last equation, we conclude

214 R. Awtar

that $\alpha^2(v)[d^2(w), \alpha(y)] \in Z$ for $v \in U$, $w \in V$ and $y \in R$. In particular, $\alpha^2(v)[d^2(w), \alpha(u)] \in Z$ for $u, v \in U$ and $w \in V$. In (1) replace u by d(w), $w \in V$ and r by u, then $[d^2(w), \alpha(u)] \in Z$ for $w \in V$, $u \in U$. If $[d^2(w), \alpha(u)] \neq 0$, as it is in the center Z, $\alpha^2(v) \in Z$ for all $v \in U$ since R is prime. That is $[a, [a, v]] \in Z$ for all $v \in U$. By Theorem 2 $a \in Z$; a contradiction. Hence $[d^2(w), \alpha(u)] = 0$ for all $u \in U$, $w \in V$. Since $a \notin Z$, then $\alpha \neq 0$. By Theorem 2 of [2], $d^2(V) \subset Z$. Thus we have $a \in R$ is such that d(a) = 0, $[a, d(V)] \subset Z$ and $d^2(V) \subset Z$ where $V \subset Z$ is a Lie ideal of R and $d \neq 0$ is a derivation of R. So, by Theorem 1, $a \in Z$. This proves the Theorem.

An immediate consequence of Theorem 4 is the following theorem which

extends Theorem 1 of [2].

Theorem 5. Let R be a prime ring, char $R \neq 2$, and let U be a Lie ideal of R. If $d\neq 0$ is a derivation of R such that $d^2(U) \subset Z$ then $U \subset Z$.

PROOF. Suppose on the contrary that $U \subset Z$. By hypothesis, $d^2(u) \in Z$ for all $u \in U$. If $u, v \in U$ then $d^2(u)$, $d^2(v) \in Z$ and $d^2[u, v] \in Z$; that is, $[d^2(u), v] + 2[d(u), d(v)] + [u, d^2(v)] \in Z$ and so $2[d(u), d(v)] \in Z$, in consequence of which we get $[d(u), d(v)] \in Z$ for all $u, v \in U$. By Theorem 4 $d(U) \subset Z$ and so $U \subset Z$ by lemma 6 of [2], a contradiction. Hence $U \subset Z$.

Now we are in position to prove a result which generalizes simultaneously

those of Theorems 2, 4 and 1 of [2].

Theorem 6. Let R be a prime ring, char $R \neq 2$, and let $U \subsetneq Z$ be a Lie ideal of R. Suppose that δ and d are derivations of R such that $\delta d(U) \subset Z$. Then either $\delta = 0$ or d = 0.

PROOF. Suppose that $d\neq 0$ and $\delta \neq 0$. By hypothesis, $\delta d(u) \in Z$ for all $u \in U$. If $u \in U$, $r \in R$ then $\delta d[u,r] \in Z$ and $\delta d(u) \in Z$. Therefore, $[\delta d(u),r] + [d(u),\delta(r)] + [\delta(u),d(r)] + [u,\delta d(r)] \in Z$; that is $[d(u),\delta(r)] + [\delta(u),d(r)] + [u,\delta d(r)] \in Z$ for all $u \in U$, $r \in R$. Replace r by d(v) where $v \in V$, as $d(v) \in U$ and $\delta d(U) \subset Z$, we get $[\delta(u),d^2(v)] \in Z$ for all $u \in U$, $v \in V$. By theorem 4, $d^2(V) \subset Z$ since $\delta \neq 0$. Since V is a Lie ideal of R and $d \neq 0$, then by Theorem 5 $V \subset Z$ and so $U \subset Z$, a contradiction. Hence either d=0 or $\delta=0$. This completes the proof of Theorem 6.

We are closing this paper by proving the following theorem which extends some

due to Awtar [1, Theorems 1 and 2].

THEOREM 7. Let R be a prime ring of characteristic different from 2. Let d be a nonzero derivation of R, and U a Lie ideal of R with $[u, d(u)] \in Z$ for all $u \in U$. Then $U \subset Z$.

PROOF. By Lemma 2 of [1], $[[d(r), u], u] \in Z$ for all $u \in U$, $r \in R$. Its linearization on u = u + d(v) where $v \in V$ yields on expansion $[[d(r), d(v)], u] + +[[d(r), u], d(v)] \in Z$ for all $u \in U$, $v \in V$ and $r \in R$. In particular, $[d(v), [d(v), u]] \in Z$ for all $u \in U$, $v \in V$. If $U \subset Z$, then by Theorem 2 $d(V) \subset Z$ and so $V \subset Z$ by Lemma 6 of [2]. Thus by lemma 1 of [4] we conclude that $U \subset Z$, a contradiction. Hence $U \subset Z$.

References

- [1] RAM AWTAR, Lie and Jordan Structure in Prime Rings with Derivations, Proc. Amer. Math. Soc. 41 (1973), 67-74.
- [2] J. BERGEN, I. N. HERSTEIN, and J. W. KERR, Lie Ideals and Derivations of Prime Rings, J. Algebra 71 (1981), 259—267.
 [3] I. N. HERSTEIN, "Rings with Involutions", University of Chicago Press, Chicago, 1976.
 [4] I. N. HERSTEIN, On the Lie structure of an associative ring, J. Algebra 14 (1970), 561—571.

DEPARMENT OF MATHEMATICS, UNIVERSITY OF IFE, ILE-IFE, NIGERIA

(Received June 29, 1983.)