On a combinatorial identity

B. GYIRES (Debrecen)

In this paper there are proved two theorems. The first one is a combinatorial
identity, which is suitable to calculate the Bernoulli numbers by a recursive formula
too. Itis known that there are more such recursive formulas to the calculation of the
Bernoulli numbers. After the examination of the attainable special literature, it
seems that this identity is new. — In the second theorem we give an asymtotic for-
mula for the Bernoulli numbers by the first theorem.

Theorem 1. The difference equation

(1) DR2(v+1)]+ é’ [2k2v 1] PQEPR2v—k+1)] =0 (v=1,2,...)
k=1 g
with initial condition d§(2)=% has the only solution
2% 1
(2) P(2k)=——By (k=1,2,..),

2k
where {By}y=1 is the sequence of the Bernoulli numbers with even indices.

PrOOF. Suppose that the function ¢(7) of the real variable ¢ is differentiable
twice in a neighbourhood of the origin satisfying conditions

¢0) =0, ¢’(0)=0, ¢"(0)= —1.
It is not difficult to show that the only solution of the differential equation

A o "D+ (OF+1=0
1s given by

o(f) =lgcost, IER,, r;s(zk+1)§ (k=0, £1, £2,..).

Therefore the power series

oo (v
3) o= 328
y=g -
is convergent inside the circle with radius -g— We get from the formula (3)

" () = —[o’ (-1,
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thus by the Leibnitz rule we have

LA 1
(4) (PEE)“) = _*;‘ [ ]¢(0)+l)¢sv-k+u (v =0,1, )

Since ¢’(0)=0, we obtain ¢ =0 by (4). If v is even and k+1 is oven, then
v—k+1 is odd, and converseiy Therefore it is very easily to prove by induction
that

oV =0 (v=0,1,2,..)

Thus
®) oHtY = [2 ] @ B M (v=0,1,2,..),
by (4). Accordingly
R 8 —

(6) o(2) = vé’ﬂ b"_+§)_' ¥t =|gcosz
on the circle with radms R and

oo 2v+-2)
@) ¥@= 2 @A DOGD i —tgz

v=o (2v+2)!
on the same domain, respectively. But ([1], p. 259)

oo B
i 2 v2(v+1)(92(v+1) _ 2(v+1) _2v—1
(8) "g“ v=l‘l( 1) 2 (2 1) (2 F 2)| z
on the circle with radius —; . Thus
y 2y
©) — v+t = (2"+2)k2=1[2k 1)o@ o D =

= (=1) 22+ DUV _1) By,
fram the formulas (5), (7) and (8), consequently
(10) Py = (—1)y+1 220 P(2v+2) (v=0,1,2,..),

where @ is the function defined by (2). Substituting (10) in the expression (9),
we get that functions (2) satisfy the difference equation (1) indeed. Solution (2) is

the only one, if the initial condition ¢(2)=% is given.

Theorem 2. The Bernoulli numbers with even indices satisfy the following asymptotic
Jformula:
1 1

A 2 = —,
]Ln; IBHI" -

. : : ¢ n
ProOF. Since the convergence radius of the power series (6) is equal to 3
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we have
1 ) P e
: 24(v+1)[1__2_2m] |B2v+2] v+2 5
U o >+ ) T =
using (10). By the application of the Stirling formula
22 Ilm Sllp |Bﬂv+2| ﬁ e _g_
coeallyih 2v+2 1 g
[2(” DT 2r@v+2)F '
and from here the relation
1
1
I‘T_EHP ‘Bav+s|2'+2 e
holds.
Still remains to be showed that sequence
1400
(1 18,
v v=1

is convergent. Since the first member of the expression (1) has the sign (—1)", and
the other ones have the sign (—1)"~, the relation

1@ (2v+2)| = .él [2;:1 @ 2K) [@(2(v—k+1).

holds, which is a recursive formula to calculate successantly the Bernoulli numbers
with even indices. From this formula we get the inequality

1 1 vl 3
v41 2 22(\"+1)__1]2v (|st+slg"”) v | By, |2
- =

(12) v \v+1 28 v+1 v

1 1 v—1

=1 f W PD ] e (B g ) 7 o
o e

=

Since the limit inferior of the sequence with elements of the left side of (12), and
the limit superior of the sequence with elements of the right side of (12) is equal
to the limit inferior, and to the limit superior of sequence (11), respectively, we
obtain that sequence (11) is convergent. Thus the proof of Theorem 2 is finished.
We can get an other proof of Theorem 2 starting from the konwn inequality

((11, p. 245)

2(2n)! - (2m)!

Qo ~ Bul = ammr
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