Polynomial values in linear recurrences

I. NEMES and A. PETHO (Debrecen)

1. Introduction

Let 4,,...,A4, and G, G,, ..., G,_, be integers. We have for the n-th term
of a k-order linear recurrence

(1) G,=A,G,_1+...+44,G,_, for n=k,k+1,....

Let «,,...,2, be the distinct roots of the characteristic polynomial of the
recurrence

) Pl eas. o

Throughout this paper we assume that «, has multiplicity one. Then for n=0 we
have '

3 G, = Eyaj+Py(n)az+ ... + P (n)ay,

where Pyn) 1s a polynomial with degree less than the multiplicity of «; in the charac-
teristic polynomial of G,, and where E, and the coefficients of Py(n) are elements
of the field QO(a,, ..., ).

Finally let 7T(x)=B,x™+...+B, be a polynomial with integer coefficients.
Its degree will be denoted by deg 7, while its height, max {|B;|; i=0,...,m} by
H(T).

The Diophantine equation

(4) G, = Ex"+T(x)E # 0, integer

was investigated by several authors. Naturally, most of the results are known for
T(x)=0.

SHOREY and STEWART [4] proved for general linear recurrences that (4) has
finitely many solutions in ¢, assuming |oy|=|a;/, j=2,...,t. Under some other
restriction on G,, recently P. Kiss [2] was able to generalize their result when deg
T<=cq.

For nondegenerate second order linear recurrences SHOREY and STEWART [4]
derived much more, namely (4) has finitely many solutions in integers |x|=1, ¢=2, n.
The second author investigated in [3] for nondegenerate second order linear recurren-
ces the slightly more general equation

(5) G, = wxt
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with weS, where S is the set of nonzero integers composed solely of primes from
some fixed finite set. He showed assuming yet (4,, 4,)=1 that (5) has finitely many
solutions in integers [x|>1, ¢=2, n and we€S.

STEWART [7] was dealing with the case T(x)=c¢, where ¢ is a fixed integer.
For nondegenerate second order recurrences with |4,/=1 he proved the finiteness
of the solution in integers |x|=1, ¢=2, ¢, n of (4).

All the above mentioned results are effective.

In the present paper we shall derive some results for (4), when T'(x) is a poly-
nomial with some restriction.

2. Main results

Theorem 1. Let G, satisfy (3), o, 0p#1, |og]=|agl=|a;|, j=3, ....t and
G,—Ex1#0 for n=cy. Further let ¥ (T')<H, and deg T=qc;, where H;=0
real number. Then all integer solutions n,|x|=1, q=2 of the equation (4) satisfy
g=<cy, where ¢y, cy and cy are effectively computable constants depending on E,G,
and H,.

For second order linear recurrences we prove a more precise result.

Theorem 2. Let G, be a nondegenerate second order linear recurrence with
|Ay|=1. Further let #(T)<H, and deg T=min {q(1—y),q—3} where H, and
y=<1 are positive real numbers. Then all integer solutions n,|x' =1, ¢=2 of (4)

satisfy
max {n, [x], g} < c;,

where ¢ is an effectively computable constant depending on E, G,, y and H,.

Remark. Theorem 2 is in the restriction of deg T best possible. Let L, denote
a Lucas sequence,ie. Ly=2, L,=a+p and L,=(a¢+p)L,_1+L,_s, where affi=—1
and a+f integer. Then, as is well known, L,=a"+f". Further it is easy to see
that L,,=L;+(—1)"2. This means that both equations L,=x*+2 and L,=x*-2
have infinitely many integer solutions n, x. Therefore in Theorem 2 the assumption
deg T=g—3 is necessary.

3. Auxiliary results

The most important result we use is Lemma 6 of [4].

Lemma. Let « be a real algebraic number larger than one from the field k. Let
[K:Q)l=D,E, A and B be elements of K, EAB+=0, finally 6 a positive real number.
If Exi=Ax"+B with |B|<a"*=% and n,x,q integers larger than one then q=cg
is a constant, effectively computable in terms of D, E, A, « and d.

The following theorem was proved by C. L. SIEGEL [5] for the first time but in
noneffective form. Using the upper estimate for linear forms of logarithms of algeb-
raic numbers A. BAKER [1] proved it in effective form.
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Theorem A. Let F(x) be a monic polynomial of degree n and with integer
coefficients. Let it have at least three simple zeros. Then the integer solutions x,y of
the equation Ay*=F(x) where A is an integer, satisfy max {|x|, |y|}<c; a constant
effectively computable in terms of A and the coefficients of F(x).

4. Proofs

In the sequel cg, ¢y, ... will denote positive numbers effectively computable in
terms of E, G,, H; and 7.

PROOF OF THEOREM 1. We may assume o, to be positive by changing ifnecessary
the sign of E,. Further since «; is an algebraic integer with absolute value strictly
larger then all its conjugates, on taking norm we see that either a;>1 or o, is one
of 0 or 1. But these two cases were excluded so we may assume o;>1. Put

By(n) = Py(n)az+ ...+ Py(n)og
D, = max {deg P;(n); i =2, ..., t}.
It is easy to show that
(6) 2|B,| < cagnP |ay|".

Assume that for a polynomial T'(x) with #(T)=H, and deg T'=qc;, n, |x|>
=1, ¢ is a solution of (4). We shall give an estimate for ¢ in the proof.
Write (4) in the form

ExA = E,a+ B, (n)—T().

Assume first that
) By(n)—T(x)=0
in which case
(8) E,o} = Ex?

also holds. We distinguish two cases.
If 1=|ag|=]ayl, j=3,...,t, then '!i_lgBl(n)=0 which means |B;(n)|<1
for n=cg. Further T(x) is a polynomial with integer coefficients, therefore (7)

has for n=>c¢g no solutions. By (8) q:c,—lo—:——

] <cyo because of |x|=2.

If |o,| =1, then write
& Pi(n) (o
By(n) = Py(n)og |1+ 3 = [—]‘]
!( ) ’( ) 2 ‘;; Pg(n) ot
The quantity in the brackets tends to | if n tends to infinity, so for n=>c¢,, |B,(n)|=

= |Py(n)||og|"(1 —&") = |2/"*~®. On the other hand T(x)=m H,|x|™. From (8)
we have |x|=(|E\/E|la|")%, hence |T(x)|=cypm |oy|™/9<]|ay|rs™/9. By (7)

lag|" 2~ < | B, (n)| = | T(x)| < |oy|°**™/9. This implies m=>cy, :Zi {:’: Therefore
1
if csécla%% then (7) and (8) have only finitely many solutions in n, g, |x|=1
1

which are effectively computable.
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In the sequel we assume that B,(n)— T(x)#0. Put d=(1—39)/2, where 9=0
]og |ty

g ||
for n>c¢,. We choosc ;15 such that |E||x|‘s=2E,+1. If ¢ is large enough then

Ty  write (4) in the form

|xiﬂ-¢u

if a,=1, and 9= otherwise. Since o, =1 we have by (6) |B;|< -;-a';“"”

E o} + B,(n) - T(x)

BN = X1 %n X1 %5

Taking absolute values, and applying the above estimates we have

2|Ey|+1 < |Extu| =

|Ela;+‘8|(n) +l

x1=Cs
Hence 2|E,||x|%“s=|E,uj+B,(n)|=2|E;|la}, so |x]|"“s<a]. Further |T(x)|=

. 1
=m H,|x|"<|x|*w9, with c¢,g<1. Hence 1T(x)]-=:at‘"-u""’“—‘:s-=:5a’l'l""‘ when

0 is small enough. So we have |B,(n)+ T(x)|=af" 9,
Note that if n<=c¢,;; and (4) holds then qﬂcls as required. Of course since

|x[™(Ex?=™—mH,) = |E||x|"—|T(x)| = |Ex*+T(x)| = |G,| = 1901

the required inequality for g holds.
Finally by the Lemma if n=cy and (4) holds then g=¢, as was stated.

PROOF OF THEOREM 2. The assumption [A4y|=1 means |z, a|=1. We show
that o, and o, are real numbers. Of course if one of them had a nonzero immaginary
part then |,|= x| would hold since they areé roots of a polynomial with integer
coefficients. This imply |o,| = |a,|=1.

But «,/2, cannot be a root of unity by nondegeneracy. Thus «,, «, are real
numbers and |o;|=1=|x,| holds since |o; #y|=1. Further the equation A4, a3=T(x)
has only finitely many solutions, since with n large enough 0=|T(x) =4, a3/ <1.
Therefore n<c,,, which implies ¢, |x|<cs,.

In the sequel we assume A,x5#T(x). Now we shall prove g<cyy. Assume

: : loggH, 7y
< ‘ Ix| > f = —_— ] —
that (4) has a solution n,q, |x|/=1 such that ¢g=c,,, with qlog2 ~ 2’ and
q-—:t- =1 +I Then 1 |
4 log Hym log qHy
g1 -+ —
IT(x)| < mHy|xj < |x| '** <|x| o

Applying the assumption we have

‘. lgqﬂz{ > ?_[_?] i
q(1—-y)+ log 2 $i-Dtes =q|1=5] =4
Hence 7| 1. From this follows as in the proof of Theorem 1 Ix|*t<ad,

IxiP—2
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and |T(x)|<a{®~?® with ¢ =% . Finally it is abvious that P,(n)|a,["<aj1=9.
Now applying the Lemma we conclude that g is bounded by an effectively computable
constant.

Now let ¢ and T'(x) be fixed with deg T=g¢g(1—y) and consider the equation
G, = Ex*4+T(x) = T;(x).

It is well known that G}.,—A4,G,,G,+A4;Gi=CA3, with C=G]—A4,G,G,+
+ A,G§ (see for example [3] Lemma 1). From this follows DG:+4CA%=z2, with
D=A7—-4A4,#0 and z an integer. Replacing G by Ex?+T(x), and taking |4,/=1
into account we have

R(x) = D(Ex"+T(x)?+4C = DT3(x) +4C = z2.

This is an elliptic equation, and by means of Theorem A it has finitely many
solutions in x, z when R(x) has at least three simple zeros. Let (R(x), R'(x))=0(x).
It is well known that a root @ of R(x) has multiplicity at least two if and only if @
is a root of Q(x). Further (R(x), 71(x))=1 because of ¢#0, and R'(x)=
=2D Ty(x) T;(x) so deg Q(x)=¢g—1. This means that if either deg Q(x)<g—1
or it has at least one multiple root then R(x) has at least three simple zeros and we
are ready.

Hence the only wrong case is when Q(x)=Ti(x), and R(x)=T1(x)2S(x)
with a polynomial S(x) with rational coefficients of degree two with not any multiple
roots. Let S(x)=s,x*+5,x+5, and consider the equation

D(Ex*+T(x)+4C = (2qEx**+ T’ (x))*(sa X%+ 5, X + 5,).

The coefficient of x*9~1 and that of x29~2 on the left hand side is 0, because of
deg T(x)=¢g—3, while the coefficient of x**~1 on the right hand side is 4¢*E%s,,
and that of x*~2 is 4¢°E%,. This means s,=s5,=0, and S(x)=s,x* wich is a
contradiction.
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