On the Lebesgue function on infinite interval, I

By S. A. N. ENEDUANYA (Lagos)

1. The approximation of the Lebesgue function on a finite interval was exten-
sively discussed by G. GRUNWALD and P. TURrAN [1]. In this paper we extend their
investigation to infinite interval.

Moreover we establish the convergence of the Lagrange interpolation poly-
nomial on the infinite interval.

Let a weight function

(1.1) px)=p=0
be given, such that
1
(1.2) f p(x)dx < eo.
~1

Clearly, there exists a unique orthonormal polynomial system {w,(x)}s=¢ such that
] 0, n=m

[ 0, () 0 (x)p(x)dx =6, ,, = { :

-l »

n=m’
A special case of this system is the system of the so called Jacobi polynomials, where
p(x)=(1=x(1+x)f, 0=a f>—1.

Let w,(x,,,)=0, where

(1.3) e S s et T I W SR IRC e

The Lagrange interpolation polynomial L,(x) for prescribed values {y, )i,
such that
L X m ¥ (L R0 w83

can be explicitly written as
(14) L,(x) = Z; Yvonly,n(X)

where as usual
= w, (x)
ha®) = -7

The Lebesgue function is given as
def [
(1.5) ()= 2 (b, a ()]

"v.n(xj. u) = 60"
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and the Lebesgue constant is defined as
by = max {2, (x)}.
G. GRUNWALD and P. TurAN [1] proved that if (1.1), is true then
W)= CiVn, xe(=1,1)
In(x) = Con, x€[—1, 1],

and

where C, and C, are suitable constants.
2. In this paper the approximation of 4,(x) on the interval [0, =) will be con-
sidered.
Let a weight function p(x) such that
(2.1) f *p(x)dx = (k=0,1,2,..)
0

be given.
Clearly, there exists a unique system of orthonormal polynomials {wj;(x)}i=o
such that w, (x) has exactly n simple zeros, i.e.

2.2) R R g N N B N S S e R (B B T R

It is plausible to choose our x,-points as the zeros of n-th Laguerre polynomial
defined by

(2.3) wy (x) = %x T e e =1),
then in this case

p(x) = x*e™*.
We shall now assert

Theorem 1. Let p(x)x~%¢*=m=0, a=—1 and

f *p(x)dx <= (k=0,1,2,...).
L]

Then the Lebesgue function using the nodes (2.2) satisfies the following condition:

=)=

o 1
o(x 3
I (X) = 1 1

o(n' [0§xg,4,—1-:a§_5],

[Oﬂxf_—-'A,a:}-%],

where A is an arbitrary fix real number.
Remark. /f p(x)=x%"", then m=1.
3. A very useful role will be played by the following statement.
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Lemma 1. The Cotes numbers belonging to the system (2.2) satisfy the relations
(3.1) [ L@p@dx = [ L,x)Pp(xdx (1=v=nn=123..).
0 0

PROOF. Let

oo

I= [ L,ULE-1pEdx, 1,(x)=

0

wy (x)
@, (x,)(x,—x) "

Clearly /,(x;)=0, v#j and [ (x,)=1, j,v=12,..;n n=1,2,3,.... Also
I= [ 0;(x)g,-2(x)p(x)dx,
0

where ¢,-2(x) is a polynomial of degree n—2. Hence from the orthogonality of
{o; (x)}i=o, I is equal to zero and the lemma is proved.
It is also easy to show that the orthogonality of {w; (x)}s=, implies the equation

: A
(3.2) [ 1@nwp@a={ 7

where from (3.1) i; (i=1,2,...,n, n=1,2,3,...) are the Cotes numbers.

4. We shall now present the proof of Theorem 1.
Observe that

@1 ZhL=1,

then from Lemma 1:

“.2) 2 [ BE@p@dx = 3 [ L,)p@dx = [ p(x)dx.
=L =g 0
This integral is independent of n.
Also, from (3.2) and (4.2)

@3 [{ZL@FrEdx= [ {2 L@3p@dx = [ p)dx <<=
0 V= 0 V= 0
Define &,=sign {/,(x,)}, where x,=0 is an arbitrary fix value, and let

(4.4) %m=§mmy

The polynomial ,(x) is of degree n—1 and can be expanded by the Fourier
series of Laguerre orthonormal polynomials

1 1
(4.5) @, (x) = I'(a+1) ’[":“] L@ (k=0,1,2,..).

6 D
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Thus

4.6) v, (x) = g 6P, (x)

and from Cauchy’s inequality

47) (FF= 3 d 3 B

That is,
(4.8) f [P, (x)Ex*e~*dx = f {nz_'l oD (X)Px*e *dx = :21 G=
= —;—; f [‘é{ e, 1,(x)]* p(x)dx.

From (3.1) and (4.3) the last term in (4.8) gives

n—1

[ =
(4.9) kgo Ce=—r ,;f p(x)dx <.

This value, which is independent of n, clearly satisfies relation

n-1
(4.10) [¥,(x)F =0(01) ,E., [Py (x))*.
We have that (SzeG6 [2])
s l s 1
(4.11) L® (x) = 0(1){?*::’ " [OéxéA,sx g-%
and
e 1
(4.12) L® (x) = O(I)n? , [0 =x=A4,-1l<a= ,_.% ;

Relations (4.5), (4.11) and (4.12) give directly

@.13) S =ran= 3 (47 wewr -
o

=o()x *n [xe(o, A, x= —%]

(4.14) :_j: (@, (]2 = 0()n* [xe[o. Ml ~l=ws —%]



On the Lebesgue function on infinite interval, T 239

Hence, from (4.4), (4.7), (4.9) and (4.10) we have

@.15) W, (%) = 2 (x0) = ,_21 1, (x| =
O(l)xo_?+Tn-‘- [xoé(O, A, a= -—%},
= 4
o(Dn' [x.,e[o, A, —1<a g%]

Thus, the theorem is proven, because x, is an arbitrary value.
5. It is interesting at this point to consider a function
(5.1) fx)=e*p(x) (@a=0, x=0),

where @(x)€Lipyy [% <y= l] A

Let us define polynomials L,(x;f) of degree n—1, satisfying the following
equalities, on the roots of Laguerre polynomials

L,(x,; f)=e"f(x,) =o(x) =,
r=1,23,...,85,0=123..)
The polynomials L,(x;f) have the explicit forms

(5.2)

(5.3) Lix; /) = g'ly.:,(x),
where
(5.4) R (AT .

LI(IGV (xv)(x_ xv) ¥
We shall now prove the following statement.
Theorem 2. If f(x) satisfies the condition (5.1). Then

E X 1

OiNET Sa (xE(O, A], a = —%]
If(x)_e‘an(x; f)[ - 1_2 1
o(n* * [xG[O, A, —l<a= _5]’
where A is an arbitrary fix real number.

PrOOF. Let x,=x,(x) denote the roots of polynomials L{ (x), then the follow-
ing inequalities are true (SzeGo0 [2])

v: v
(5.5) S T e bl T
v=12..,nn=123.)

where ¢, and ¢, constants are independent of v and n.

6‘
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Let @(x)€Lipy v, -%-«:y:’—il, x=0 and x=%{u+l), x,=X,(x) then

(5.6) g(w)= o [%(w l)] = ().

Obviously, if x€[0, x,] then w€[—1,1] and since | —u"|=d,u',u"€[—1,1] we
have

(5.7 w(d; g = w[%é; tp] = 0(1)[;" é]r,

where w(-:;g) and w(-:¢) denote the moduli of continuity of g and ¢, respec-
tively.

If u€[—1,1], u=cos 3, then 'P(S)gg(cos 9) is an even function, so its
Jackson-mean [3] J,,(9, ¥) is a pure cosine polynomial of order 2m—2, therefore

(5.8) Jn(arc cos u, ¥) = Qyp-a(u; g)

is an algebraic polynomial of degree 2m—2 and

(59) Qom-2(u, 8) =
. 3 - sin mt)'
= TG f {g[cos (arc cos u+21)]+ g[cos (arc cos u—2t)]}( == ] dt
0

It is well known that

(5.10)

g sin mt 3
:rrm(2m2 1) g f [ sin ¢ ] el

By using relations (5.9), (5.10) and (5.7) it is easy to verify that

5.11) Qam—2 (1, §)— g ()] = O(1) ["‘,",,'i"]:“[x" '/F ]

From (5.11) and (5.6) if u= ZxY—x,, and x€[0,x,] we have

“*N

o+ (B2 o) -] = o {(Z2zl) 4 (Lax X))
)l

sz alx; o) = O 2[2&: - fP]

Xn

(5.12) = 0(1){[

where equality

implies that it is a polynomial of degree 2m—2.
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If mz[—;-], then 2m—2=n—1 and in this case we have
(5.13) Qim—2(x; @) = gl'Qa..-a(xv; @)1, (x).

From (5.12), (5.13) and (4.12) we have, that for x€(0, 4], a= —%, m=[%],
x, =x.(a)=0()n

PO=Ly(x; @) = ()~ Qin(xs )+ 3 1Qhm-s(x) =0 ()1,()] =

h d v

(5.14) =oMn *+0Mn * 3 I+

0=x,=<24

+o(n *{ 3 10 LS ().

The following inequality is true, if 1=m=2n—1 (Szec0 [2])

l1 a

= S5
2

=0()n* 2.

E

- )
2

515 Zx L@@ = Va3 e L ()

(-]

Using (5.1), Theorem 1, (5.14), (4.12) and (5.15) we get
|f(x)—e*L,(x; f)| = e*|o(x)—L,(x; @)| =

o)x* *a* *, for aé—%, x€(0, A),

== 1 r

on® *, for —1<ua g-%, x€[0, A].

This completes the proof of Theorem 2.
We acknowledge the whole extent of our indebtedness to Prof. J. BALAzS his
valuable suggestions during the preparation of this paper.

References

[1] G. GrinwaLD—P. TurAN, Uber Interpolation, Annali della Scoula Sup. de Pisa, (2) 7 (1938),
137—146.

[2] G. SzeGG, Orthogonal polynomials. Amer. Math. Soc. Coll. Publ., XXIII, 1959.

[3] D. Jackson, The theory of approximation, Amer. Math. Soc. Coll. Publ., 11 (1930).

S. A. N. ENEDUANYA
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LAGOS, NIGERIA

{ Received November 11, 1983. )



