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BY I. G. KALMAR (Debrecen)

The aim of this paper is to discuss the relation between orthomodular lattices
and a special algebraic structure called *-structure. This problem originates from
quantum logic, where it is supposed that the propositions (events) of a physical
system form an orthomodular lattice.

Similar ideas were proposed by FouLis [1] and later by PooL [5], [6]. Foulis
discovered the lattice-semigroup connection, and he has shown that every ortho-
modular lattice generates, in a given way, a Baer*-semigroup, and every Baer”
semigroup contains a subset that is an orthomodular lattice. However, as proved by
FouLss [1], this connection is not “‘reflexive” because starting from a Baer*-semi-
group, constructing the orthomodular lattice of its closed projections, and construc-
ting the associated Baer*-semigroup, the two Baer*-semigroups are not isomorphic.

Pool’s works [5], [6] continued this line and studied the connection between the
quantum logic structure and the existence of states that one can interpret in terms
of idealized measurements. More exactly, it was proved that his axiomatic system
for the state-transformation functions implies a #-semigroup structure on theese
functions.

Our representation of orthomodular lattices by #-structures 1s based on the
* product:

Let Z(V, A, 1,0,1) be an orthomodular lattice with first and last elements
0 and 1, respectively. Then for all a, b€ % one can define

axb = (aVb+)Ab.

For a detailed examination of orthomodular lattices and of the % product we
refer to MAEDA [4] and KALMBACH [3]. Here we recall only some basic notions and
results.

Two elements a and b of & are orthogonal (a1 b) if a=b*-. We say that
a, be & are compatible and write a<-b if there exists a Boolean sublattice B in &
containing a and b.

Proposition 1. /f one of the three elements a,b,c of an orthomodular lattice
& is compatible with each of the two others, then

(aVb)Ac = (aANc)V(bAc)
and
{aAb)Ve = (@aVe)A(bVe).
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Proposition 2. The following statements are true in an orthomodular lattice ¥ :

(a) a=b=a+b

(b) al b=a~b

(¢) a=+b=a+b"

(d) a~~b=axb=a/\b

(e) & isdistributive if and only if a<+b for all a,be ¥
(f) a=b;=a~\/ b;, a~ )\ b;

(@) @Vb):=a*Ab*, (ahb):=a*Vb: forall a,be 2.

Proposition 3. (See also [2, Proposition 6.2]) In an arbitrary orthomodular
lattice & the % product prossesses the following properties: if x,y,ze€%, then

(@) z*z=z

(b) z2x=0 if z1 x

(c) (z*x)*y=0 if x1Ly

(d) (z2x)*x=z#*x

(€) zx(z*Xx)=z*Xx

() zxx=zAxex—z

(8) zxx)*xy=(z*y)xx=z#*x if x=y

(h) (Vz)*x=V (z*x) if V z; exists
i i i

(1) (x*y)*z=x%(y*2z) if z+y

Theese properties of the * product serve as a basis for our definition of a
* -structure:
Let % be a nonempty set with two special elements O and 1. For each x€.% let an
element X'€¢% be given and for each y,z€% an element y-z=yz€¥. Let
x=y iff xy=x and assume that the following properties hold:
(i) x"=x, xsy=y'=x" Vx,ye&
(i) O=x=1 VY xe&
(iii) xy=0ex=)’
(iv) xx=x YV x€&
(V) zy=yz=(xy)z=x(yz)
(vi) xy=yx=xyl=yix
Then & (with the two operations “ and -) will be called a *-structure.

We say that x€% and y€% commute ((x,y)C) if xy=yx. Propositions
1-—2—3. imply the following

Theorem 1. Every orthomodular lattice forms a % -structure, where " and - aré
defined as the orthocomplementation of the lattice and the % product, respectively.

Let us remark that the operation x,y—x-y, x, y€5 is not commutative in-
general.
We need some technical computations:

Proposition 4. Let S(, -,0,1) be a *-structure. Then

(@) if x,y€&, x=y, then x and y commute
(b) x=y iff xy=x is a partial ordering on &
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(c) Let x+y=(x"+y), x,y€&, then
(cy) x and y commute iff x+y=y+x
(c)) x=y iff y+x=y _
(cy) if y and z commute, then (x+y)+z=x+(y+z) ¥x€ .
(d) xy=y=x+y Vx, €&
() Xx=xx'=0; x+xX'=x+x=1 Yx€&
(f) if x and y, x and z commute, and y=z, then xy=xz, yz=zx, and x+y=
=x+42z.

PROOF. (a) x=y=x:y'=0, y=x'=)y x"=) .x=0, so xy'=)’x which

implies xy=yx.

(b) x=x is trivial. If x=y and y=x, then x=xy=yx=y. If x=y, y=2z, then

by (a) of Proposition 4. y and z commute, and xz=(xy)z=x(yz)=xy=x, S0 x=z.

(¢;) x and y commute < x’ and » commute <Xy =)xe(xV)=0'x) <
x4+ y=y+x

(co) x=yey=xeyx'=ye(yx)Y=y'ey+x=x

(cg) is trivial

d) ()y=x(y)=xp, and (x+p)+y=x+(y+y)=x+y, 50 by (c) y=x+)y.

() x'x=xx"=0 istrivial. 0'=x Yx€&, so 0'=1=0'=1, 1’=0. Hence x+x'=
=x"4+x=1.

(f) Let xy=yx, xz=zx, y=z, then (xy)(xz)=(xy)-(zx)=((xy) -z)x=(x(yz))x=
=(xy)x=x(yx)=x(xy)=(xx)y=xy, so xy=xz. With the help of the preceding
inequality y=z=z2'=)y'=x"2'=x"y'=(x"2’y =(x’y’Y thatis x+y=x+-z.

Now we can state our main theorem:

Theorem 2. If ¥ (0,1, -,’) is a *-structure, then ¥ (0,1, =.") is an ortho-
modular lattice with " as an orthocomplementation,

inf (x, ¥) = xAy = (x+ )y,
and
sup (x, y) = xVy = (xy)+y.

PrROOF. Let x,y€% and z=(x+)’). First we prove that z=x. Indeed,
z=xex’'=2exz=0. However, Xz=x"((x+)))=x(y(x+)))=(xy)(x+)")=0,
because (x'y)'=x+)’, so (x'y)x+)")=0.

By Proposition 4. (d) we have z=y. To see z=inf(x, ), let us assume w=x,
w=y foran we€S. Then

(x+y)H@+y) = x+(y'+(@+))) = x+(@+)) = (x+@)+) =
' = (w+x)+)y =x+),
so by Proposition 4.(¢) w+y'=x+)". Since (y, x+)")C, (y, 0+y)C, (0, w+y')C,
w=y, by Proposition 4. (f) we have
o = (@+)y)o = (@+))y =x+y)y' =z

Hence w=z which implies xAy=(x+)")y.
On the other hand fet u=(xy’)+y. Then w'=(x"+y)-y'=x"Ny’", so v'=x,
=y, u=x, u=y. f v¢¥. and x=v, y=v, then X'=v, y'=¢, so v=v
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or equivalently w=». This means that

xVy=(xy)+y.
Of course xAy=(x+)y)y, xVy=(xy")+y imply
(2.1 x+y)y=0+x)x
(22) xy)+y = (x)+x.
Since
x\x' = (x+xN)x ={x4+x)x" = xx' =0
and

xVx' = (xx")+x = (xx)+x" =x+x =1,

the operation ” is an ortocomplementation on . The proof will be complete if we
show the weak modularity in &. Let us assume that x, y€.%, (x,y)C. Then z=
=xy=yx, and z=x, z=).

If o=x, w=y forsome we, then by Proposition 4. (f) we have xy=zwy=wo,

SO

(2.3) xAy=xy if (x, py)C.
By a similar method we get

(2.4 xNy=x+y if (x,»)C.

Let now x=y, then (x,»)C, (y,x")C, (yAX’, x)C and consequently
y=x+y=x)+x=QAX)Vx.
This means that the weak modularity holds in &.
Proposition 5. Let & be a *-structure and a, b€ S. Then

(i) ab=(aVb")Ab, a+b=(a\b")Vb, and
(ii) (a, b)C<a~ba/\b=ab<aVb=a+b, where N, N\ have the same meaning as
in the preceding theorem, and <~ is the sign of compatibility.

Proor. (1) If a, b€ ¥, then
(aVb)Ab = [((ab)+b')+b"]b = ((ab)+b")b = (ab)A b = ab,

(@Ab)Vb = ((@’Vb)ADY = (@b’ = a+b.

(ii) If (a, b)C, then by (2.3) aAb=ab, and from (i) aAb=ab=(aVb')\b.
Hence a<~b. On the other hand, if a<-b then aAb=(aVb')Ab=ab, and a\b=
=(bVa')Na=ba, which implies (a, b)C.

The implications a<-b<>aAb=ab follow from Proposition 2.(d) and from
(2.3). Moreover, with the help of De Morgan’s laws we can get aAb=ab<aVb=
=a+b.

If #(0,1,’, +) isa *-structure, then let us denote by /(%) the orthomodular
lattice with partial ordering defined by x=y iff xy=ux, and with the orthocomple-
mentation “. Conversely, if £(0,1,V, A, 1) is an orthomodular lattice, then
denote by s(%) the *-structure defined by ab=a%b, and a'=a'.

and
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Theorem 3. Let ¥ and & be an orthomodular lattice and a *-structure,
respectively. Then

() I(s(L)=2
and
(i) s((£)) = &

PROOF. (i) is trivial because the partial orderings in % and /(s(<)) coincide.
(i1) is a simple consequence of Proposition 5.
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