Matrix valued statistical investigations of the double
measurements modell

By J. KORMOS and GY. TERDIK (Debrecen)

Introduction

The study of matrix valued stationary processes was begun by B. GYIRES and
T. BALogH [1], [2]. Our earlier studies aimed at the spectral and moving average
representation and the prediction of the nonquadratic matrix valued stationary
processes [3], [4]). Following these we come to the statistical questions of the auto-
regressive matrix valued process [5]. These last results of ours were made actual by
a work of T .W. ANDERSON [6] concerned with the double measurement model of time
series, as double measurement is the case when we increase the number of columns
of the matrix valued process.

In this paper we first point out the relation between matrix and vector valued
processes, then we deal with the moving average representation of the matrix valued
process and give a statistical examination of the double measurement model. Con-
cerning this last case we want to remark that our method requires a weak condition
from the errors, but it does not allow the dependence of coefficients from time.

1. Representation of the matrix valued autoregressive
process as an infinite moving average

In this part we deal with the MA (moving average) representation of the AR
time series defined by the equation
P

(1) 2 A(j)x(1—j) = &(1)

where A(7) is a nXn scalar matrix
x(7) isa nXm random matrix
g(r) isa nXm random matrix, and

(2) Ee(1)e’(s) = 84.Z.

With the following remarks we would like to point out the difference between the
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process (1) and the vector valued processes related to it, and the difference between
the MA representations in accordance with these processes.

(i) Let us consider m vector valued AR (autoregressive) processes with equal
coefficients

P > >

(3) 2ANxO@—j) =20 (i=12..,m)
j=0
where the £7(r)’s are uncorrelated, that is
(4) Ee® (1) = 0,
(5) EP (gD (s) = 850, (i,j=1,2,...,m).
Let us construct the matrix valued process x(#) by the formula:
(6) x(0) = (x(@), ..., xX™ ().
Then the x(7) will be a matrix valued AR process with A4(j) coefficients and with the
residue of
e =(E20), ..., 8™(@))

with

Ee(1)€’(s) = 0.5, where = >'I,.
i=1

(i1) If in the above case we exchange the condition (5) for the weaker
5y Eﬁw U)Eur (s) = oL%; ;

the process formed in the manner of (6) will be a matrix valued AR process as well.
(i1i) A matrix valued AR process (1) usually cannot be decomposed into vector

valued AR processes of type (3) because condition (2) is weaker than (5) or (5).
(It cannot be deduced from the equations

X = Ee()e'(s) = E( 2”" D (1) eV (s)) = Zm' EeD (1) (s)
i=1 i=1
that
ED (D)"Y (s) = o Z;
for all 1)

In the case of statistical investigations the question of the MA producibility
of (1) is of capital importance. This is what we get a favourable answer in the next
proposition.

Theorem 1. Let the AR equation (1) be given and the condition (2) be satisfied.
If the equation

™ det(é‘l A(j)zP~) =0

has no root on the unit circle at all, then there exists a single-valued solution of equation
(1) for given initial values — x(—p), ..., x(—1) — and this solution can be written
in the form of

(8) x() = HOC+ 3 A()e(t—r)

r=—oa
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where H(t) is a nXnp polynomial matrix, C is a npXn scalar matrix, which is
defined by the initial values uniquely, A(r) is a nXn scalar matrix the elements of
which converge to zero exponentially in case of |r|— o=.

We do not prove the theorem in full detail but we sketch the considerations
leading to the verification of the statement.
The solution of the homogeneous equation belonging to (1)

ZAGDY ) = O

is Y(t)=H(#)C where H(t) is a polynomial matrix built from the column vectors
hO@) = zLh(k, w) (1 = I(u, j, k)
where z, is the root of the equation (7) and h"”(r) solves the equation
(ZA()z"~)h =0

(I=1.....np: u,j, k,run through intervals defined uniquely during the construc-
tion.)

4 .
By the conditions of the theorem the inverse of the polynomial matrix > 4(j)z’
j=0

can be expanded on any annulus containing the unit circle into a Laurent series
which will be denoted by

©) > L()=

1= —eo

On the basis of simple considerations it can be realized that all these matrices L(r)
(r=..., —1,0, 1, ...) satisfy the condition

I
> AG)L(t=)) = 8y,
Jj=0
and the matrix valued process formed with their help

V(i) = > Li—u)e()

satisfies the equation (1).

Uniqueness follows from a simple algebraical consideration. A(r) can be gained
by index transformation from L(¢). The point under discussion in Theorem 1. is the
convergence in mean square of matrix sequences. Here we mean the adequate con-
vergence interpreted in Quasi—Hilbert space B. GYIRES [1]. At the same time
in our case one also has componentwise convergence in mean square because
of the role of coefficient matrices played in (9), and it is of basic importance during
the statistical investigations. If the roots of (7) are within the unit circle we gain
the solution

(10) ()= 3 A(Pe(t—r).
r=0

This is what we call the MA representation of the process, which is the stationary
solution of the equation (1) on the basis of (2).
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2. Estimating the matrix valued AR process

Let us consider the equation (1) examined in the previous point for p=1, and
let us deal with the first order matrix valued AR process

(11) x(O+Ax(t—1) = (0.

We can simply realize that this is no restriction of generality. Namely in case of a
known order p=1 the equation (1) can be transformed into a first order equation
of higher dimension depending on p so that the conditions of the MA representation
do not change (T. W. ANDERSON [7]), and AP(r), A'(r) respectively are defined by
the same matrices A( j).

Our purpose is to show the statistics which can be constructed for 4 and for
Z and which can be considered as generalizations of the vector case to have good
leatures. .

Let the basic equation of the estimation A related to A4 be

L X 2 T
(12) = 2 x(s=Dx'(s—1NA" = A 2 x(s—1) x'(s),
T S=] T s=1
while as a consequence of this the estimation £ arises in a natural way in the form of
{ T
(13) =z 2 (x(s)+Ax(s— 1)) (x(s)+ Ax(s—1))".
s=1

The previous estimations can be gained by the least squares method or, requiring
the normality of &(f)’s, by the help of the maximum likelihood principle.

We remark that in the sequel by the distribution of a matrix valued random vari-
able x=(x, ..., x™) we mean the distribution of the vector x’=(x", ..., x™")
obtainable by **stretching” the columns of the matrix. The interpretation is justified
in accordance with the remarks (i)—(iii) made at the beginning of point 1.

First of all we demonstrate that under adequate conditions the estimations
(12)—(13) are consistent. Let us consider the MA representation ‘belonging to (11)

(14) x()= 3 (—AY e(t—r)
r=0
and let the subsequent conditions be satisfied
(15) Ee(r) = (0), s Ee(r)e’(1) = Z.
Moreover let the &(7)-s be independent and identically distributed.
In that case
L P

(16) ?”2'1 e(r)e’(r) w—= %,

A , st
(17 = 28X (r—1)5==> (Ouxs

TS
#
(18) lT Zx(r)x'{r)?—f-_'-;* G where G = Ex(n)x'(1).
F=1
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These statements can be verified by adapting the conditions neccessary to the rep-
resentation (14) and theorems, inequalities which can be ranked among the classical
laws of large numbers. The complete proof can be found in J. Kormos [5].

Theorem 2. Let the conditions (14)—(15) be satisfied and let X be positive defi-
nite. Then

(19) A2 A,
(20) T LS

To establish the first part of the theorem let us consider the equation sequence
(21) A—A =

[ 2x(5+l)r(s—l)] Zx(s—-l)r(s)——zvr(s—l)x (s—l)A]

l T k. -—ll T - r
- ?gxls—l)xu—l)} T gx(s—-l}a(s).

Following this we obtain (19) by using (16)—(18). The justification of the
second part, that is of the consistency of the estimation £, arises from the consis-
tency of the estimation A. Next we examine the asymptotic distribution of the esti-
mation 4. Similarly to the vector case we can verify (J. KOrmos [5]):

Theorem 3. Let condition (14)—(15) be satisfied and let G be positive definite.

In this case the limit distribution of VT (A’ — A’) is normal with zero mean and with
covariance matrix G7'® ZX.

3. Estimation of the parameters of the double
measurements model

Let us consider the first order vector valued AR process
(24) X()+Ax(1—1) = &(1)

the parameters of which we would like to estimate in case of so called double
measurements.
Let the sample of elements

=) 2T M=T, i/ M

be given with respect to the process (24) and let us assume that we can increase the
number of measurements M in one moment over all limits instead of the usual inc-
reasing of the number of sample elements 7. In this way we examine simultaneously
samples of numbers M having elements of numbers 7 individually related to the
process (24), or in another way with respect to the process

x(D+Ax(t—1) = &(1),
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where
x(1) = (x1(1), ...y X (1))
Suppose that

(25) Ee, (1) = 0,

5;: zlml_mgl. |"11_m21 g !,
(0),,, |m1_mzl > 1

26) Bt () £y 1) = |

for all m, my, my, t, t;, t,. The latter essentially means that the errors of the obser-
vations are “‘/-correlated™.
This implies

C]m; mal, [n=tal = Zo(—A)szm._mg[(— A')!"""IH« Imy—my| =1

(0)p9 Iml—"ﬂ12| = /.

Ex,, (1) X, (1) =

As a consequence the basic equations of the estimations concerning the matrices
X, and A are

M

1 T L T
@ 3 =2 St D5~ DA =—37= 3 3 5ut=D5a ),

r

(28) = 21 Z:( (D) + Ax, (1=1)) (x, () + Ax,,, (1—1)).
m =
The good features of these estimations for fixed m are known (T. W. ANDERSON
[6]. [7]). First we show that they are consistent for fixed ¢ also. To realize this it is
enough to justify the following auxiliary statement.
Auxiliary statement. Let the condition

l .. ’ £
(29) ﬁng‘l Em(’)ﬁm(r)u,_m EO
be satisfied. Then
I M
(30) Z m(ﬂ tm(” M-m- CD 0s
m=1
1 3 st
(31) ‘_'Z'I X () Zu(t—1) e Cos.
Proor. Let

Xm r(1) = ZR'A‘Q,,(I'—J\').
k=0

SO

M M
- Z( X (1) X (1) — ZA ZoA™) = ﬁ g’,laf...(t);;.tr)~cn.o=

M
M M
Z( m R (1) X, (D) — Z AT A+ — ZI (X (1) Xy () — X, & (1) X1y, R (D))
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The first member is

oo

(32) f A*(% Zu'gm(r—h)g;(r—f)—éffo)A”— bR o Y
m=1

k,i=0 k=R+1

By conditions (26) and (29) the first part of (32) converges stochastically to zero in
case of M- forevery R. Soin case of R—+= and M - (32) converges stochas-
tically to (0),. In case of the second member let us take into account consider that

lim sup E|x,, (1) x,, (1) — X3, g (1) Xn, g (1) = 0.

R+ m,t

E|xp (D) X0 () =X, g () X g (D)| =
= E|(Xn (D)= X, k(D) Xm, R (O + X (O) (X () — X, r D) | =

Utilizing this

= (Co*( 3 AT AN P+( 3 A ANE(C
k=R+1 =R+l

After adapting so the Tchebicheff inequality the second member converges to (0),
in case of R--=, M-, The justification of (31) can be performed in a similar
way.

Theorem 4. Let the characteristic roots of — A be within the unit circle, and let
(29) be sufficed. If C, is positive definite then

(33) y oL )
(34) £ Z,.

ProOF. Adapting the transformation corresponding to (21) the equation
(35) Co,1+A4Co 0 = (0),

which follows from the Yule—Walker equations belonging to (24), and the auxiliary
statement lead to (33). The justification of (34) can be performed simply by using
(33) and (29). Now it is not our purpose to examine to which simpler more elemen-
tary conditions (29) can be traced back, we just remark that under the conditions
(25), (26), (29) is ensured by the existence of the fourth moments of the elements
el (1) (i=1,...,p) and by the stationary characteristic in ‘“‘nearly” fourth order
moments of these elements.

Next we show that the limit distribution of the random matrix Y M (4'—4’)
is normal. In the sense of the aforesaid it is enough to show that the limit distribution
of an arbitrary linear combination of the elements of the matrix

1 M
(36) z(m) == 2 xu(t—1)en(?)

VAT i

is normal. Let (a) the condition (25) be satisfied, (b) the sequence
37) & &), . 8a(®) ...
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be I-dependent for every fixed r.

() Em(1), +os & (D), -

independent for every fixed m (d) the fourth moment of &, (1) (i=1....,p) exist.
Let us remark that

(38) §(m) = (1) Bxp (1 —1).

It can be shown that

(39) Ep(m) =0, that is the mean of u(m) is

independent of m. According to (37) cov (u(my), u(m,)) does exist, and

(40) cov (u(m,), u(my)) = Eep, (1) Bx,p, (1—1) &, (1) BX,, (—1).

Because of the previous conditions (37)

(41) cov (u(my), u(my)) = tr (Cpy - g) B Z sy —may B)-

The subsequent limit distribution theorem concerning the dependent random vari-
ables is of primary importance. (P. BILLINGSLEY [9].)

Auxiliary statement. If &, is a @-mixing sequence and J @)*< o) E¢,=0
and moreover &, has finite variance, then the series
0 = E§+2 3 E&oln
k=1
is absolutely convergent, and if ¢*=0 then

ﬁg;i: v N, %)

We prove that the sequence pu(m) satisfies the conditions of the above-mentioned
statement. As a consequence of (37) the sequence u(m) is /-dependent and so ¢-mixing.
Following from the interpretation of p(m) and from (42) E,u (0) and Eu*(0) do exist.

We have proved that the limiting distribution of —M Z u(m) is A°(0, 6*) where

m=1
I
= ;—‘2: tr(Cpy B2y B)-
That is
]
0= tr(CoB’ZyB)+2 3 tr (C,B'L,B).

k=1
On the basis of all this the following theorem is true:

Theorem 5. Let us consider the first order vector valued AR process (24) and let
the conditions (37) (a)—(d) be satisfied. Then the estimation (27) concerning the coeffi-

cient matrix A is asymptotically normal, that is the hmn distribution of VM (A" -4
is normal.
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Taking into consideration that

- | S
A== S A®
. T i=1
where A(7) satisfies the equation
M s M
2D Xm—Dxp(t=1DA' D)= J xu(®)x0(D
m=1 m=1

the following theorem is true:

Theorem 6. Under the assumptions of theorem 5. YMT(A' —A') is asymp-
totically normal with zero mean and covariance matrix

|
Cn®20+2 Z Cu—leCO_l®zk.

k=1

For the proof of Theorem 6. we point out only that A(¢) and A(s) are asympto-
tically independent when s#r. We remark that the last theorem is very useful
for statistical investigations concerning the double measurements model.
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