Rees algebras and their varieties

By IVAN CHAJDA (Pferov) and JAROMIR DUDA (Brno)

Following [3, 8], a subalgebra B of an algebra A is called a Rees subalgebra
whenever there exists a congruence 6 on U such that (x, y)€@ if and only if either
x=y or both x, y are elements of B. In this case, 0 is called a Rees congruence on
2 induced by B. Rees congruences were introduced by D. REEs [6] for semigroups;
Rees congruences on lattices were used by G. SzAsz [7] for a construction of special
kind.

The present paper deals with algebras having Rees subalgebras only. They are
called Rees algebras. Rees algebras are closely related to Hamiltonian algebras,
see [S5], and thus also with algebras having the Congruence Extension Property,
see [4]. For basic concepts and notations used in this paper see [2]. We will write
A, B, etc. for the universes of the algebras 2, B, etc.

1. Basic concepts

In the sense of [5], an algebra A is called Hamiltonian if and only if every sub-
algebra B of U is a block of the congruence 0(BXB), where 0(BXB) denotes the
smallest congruence on ¥ collapsing B. In some particular cases, this congruence
may be of the form 0(BXB)=BXBUw,, where @, denotes the diagonal of A.
However, this form of (B X B) is identical to that of [3]. In this way we introduce

Definition 1. An algebra  is called a Rees algebra if BXBUw, is a congru-
ence on A for every subalgebra B of A. A variety ¥" is a Rees variety if each UcY¥”
is a Rees algebra.

Thus a Rees algebra is a special case of a Hamiltonian algebra. As it was proved
by E. W. Kiss [4], every variety of Hamiltonian algebras has the Congruence Ex-
tension Property (briefly CEP). For this reason recall

Definition 2. An algebra A has CEP if every congruence on an arbitrary sub-
algebra of U is a restriction of some congruence on 2.

For Rees algebras, it will be useful to modify the definition of CEP in the follow-
ing sense:

Definition 3. An algebra 2 satisfies strong CEP whenever U 6Con A for
any congruence 0 on a subalgebra B of .
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A class of algebras € has CEP (strong CEP) if each algebra in 4 has CEP
(strong CEP).

Apparently, strong CEP implies CEP and any algebra having strong CEP is
a Rees one. A natural question arices: does there exist a Rees algebra which has not
strong CEP? The answer is positive:

Example 1. Let 2 be a four element groupoid given by its multiplicative table:
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Clearly a subset B={a, b, ¢} forms a subgrouroid of A and A has no other proper
subgroupoid. Clearly U is a Rees groupoid since BXBUw, is a congruence on .
However, 2 has no strong CEP cince the equivalence 0 with classes {a, b}, {c}is a
congruence on B although 6Uw, is not a congruence on A because

{(a, b)€O, (z,z)cw, but (a,c)={(a-z,b-z)§0Un,.

2. Rees algebras

Theorem 1. For an algebra N, the following conditions are equivalent:

(1) A is a Rees algebra;

(2) every subalgebra of U generated by two elements is Rees;

(3) for every unary algebraic function ¢ over N and any two elements a, b
of W we have either (1) @(a)=¢(b), or (ii) @(a)=s(a,b), @(b)=1t(a,b) for some
binary polynomials s and t of U.
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PRrOOF. (1)=>(2) 1s trivial. Prove (2)=(3): Let @ be a unary algebraic function

over A and a, beU. Let B be a cubalgebra of A generated by elements a, b. Then,

using (2), BXBUw, is a congruence on A containing the pair {(a, b). Consequ-
ently, also (@(a), @(b))¢ BXBUw,, whence (3) is evident.

(3)=(1): Let B be an arbitrary subalgebra of A. We have to show that the
binary relation BXBUw, 1is a congruence on A. Evidently, it suffices to verify
the Substitution Property only: choose {(a,b)¢BXBUw®, and a unary algebraic
function ¢ over A. Applying the hypothesis (3), we have either (i) ¢@(a)=¢(b) or
(ii) ¢(a)=s(a,b) and @(b)=t(a,b) for some binary polynomials s, t of 2. Clearly
the first case means that (¢(a), ¢(b))€w,. Suppose ¢@(a)=¢@(b). Then {(a,b)¢
€BXB and thus by (ii), '

oL ((a), p(b)) = (s,(a, b), 1(a, b))€ B X B.
Summarizing, we get
* {p(a), (b))e BXBUw,
which clearly implies the Substitution Property.
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Example 2. (1) For a group ©®, the following two conditions are equivalent:
(a) ® is a Rees group:
(b) ®=Z,, the cyclic group of prime order.

PROOF. (a)=>(b): Let  denote a subgroup of ®. By the hypothesis, HXHUw,4
is a congruence on &. Now, the regularity of groups (see e.g. [1]) implies H=6
or $={0}, whence the conclusion G=Z,, p prime, follows. The converse impli-
cation (b)=>(a) is trivial since Z,, p prime, has no proper subgroup.

(2) For a semilattice &, the following two conditions are equivalent:

(a) € is a Rees semilattice:

(b) the length of € is at most 1.

PRrROOF. (b)=>(a) 1s trivial. Prove (a)=(b). Suppose that the length of € is at
least 2. Then © contains a three element chain a<b<c. Consequently, {a,c}
is a subsemilattice of & and, by the hypothesis, {a, c} is a block of some congruence
on ©. However, any congruence block is convex, which is a contradiction.

(3)=(2) holds also for lattices.

(4) Every unary algebra is a Rees algebra.

ProoF. This is a trivial consequence of Theorem 1 (3).

Proposition 1. Being a Rees algebra is hereditary for subalgebras and homo-
morphic images.

Proor. The first assertion is evident. Further, let h: 2 —2" be a homomorphism
of A onto A’ and B’ be a subalgebra of A’. Put B=h"1(B’) . Then, by the hypothe-
sis, BXBUw, is a congruence on 2. It is routine to verify the formula

(hxXh)(BXBUw,) = B'XB'Uw,

which implies that B'XB Uw, is a subalgebra of the square A XW. Thus
B’X B Jw, is a congruence on A’ which finishes the proof.

Remark 1. The class of all Rees algebras of the same type is not closed under
forming direct products: consider the two-element semilattice (or lattice) €,. Then
the direct product €, €, is not a Rees semilattice (or lattice, respectively).

3. Characterizations of Rees varieties

Although Rees algebras of the same type need not form a variety, there exist
varieties of algebras whose all members are Ress algebras as we can see in Example 2
(4). It motivates our aim to characterize such varieties.

Let ¥ be a variety. An n-ary polynomial p of ¥ is called essentially k-ary
(0=k=n) on the variety ¥, if the polynomial p on the countably generated free
algebra of ¥ depends on exactly k variables, see [1]. We say that ¥~ is at most
unary if every polynomial p of ¥  is either essentialy unary or essentially nullary.

Further, denote by F,(x,, ..., x,) the free algebra of ¥~ generated by the set
of free generators {x,, ..., x,}.
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Recently, E. W. Kiss [4] has proved that any variety of Hamiltonian algebras
has CEP. In this section we discuss the relationship between Rees varieties and
strong CEP: moreover, we present different characterizations of Rees varieties.

Theorem 2. For a variety V', the following conditions are equivalent :

(1) ¥ is a Rees variety;

(2) ¥ is at most unary;

(3) every algebraic function over WEY" s either a constant or a polynomial;

(4) for every unary algebraic function ¢ over WY and any two elements
a,b of AU, either (i) ¢(a)=@(b) or (ii) there exists a unary polynomial u of ¥~
such that ¢(a)=u(a), e(b)=u(b);

(5) ¥ has strong CEP,

ProoOF. (1)=(2): Let ¥ be a Rees variety. Consider the free algebra
Foin(x, 9,2y, ..., 2,). Suppose fis an (n+ 1)-ary polynomial of ¥~ depending on the
first variable. Then ¢(v)=f(v,2;,...,2,) is a unary algebraic function over
Fa,n(x,¥,25,...,2,) and, by Theorem 1 (3), we have either (i) f(x, z,, ..., z,)=
:.f(y’ Zys wees zn) or (li) f(.Y, 21 eees Z"):S(.\‘, )’) and f(ys 215 Z,,):'—f(x, .}') for
some binary polynomials s and ¢ of ¥. The case (i) is impossible since f depends
on the first variable. The second case (ii) implies f(x, z,, ..., z,)=f(x, x), ie. fis
at most unary.

The implications (2)=(3)=(4) are evident. Prove (4)=(5). Let B be an arbit-
rary subalgebra of an algebra A<¥. Further, let 0 be a congruence on B. We have
to show that the trivial extension U, of 0 is a congruence on 2. Let ¢ be a unary
algebraic function over W and (a, b)c0Uw,. Suppose @(a)+q@(b). Then (a, b)cO
and, by the hypothesis (4),

¢(a) = u(a), @(b) = u(b)
hold for some unary polynomial u of ¥". Thus

(p(a), p(b)) = (u(a), u(b))co

which completes the proof.
The implication (5)=(1) is trivial.

Remark 2. Examples 2 (1), (2) and (3) show that condition (4) of Theorem 2
is weaker than part (3) of Theorem 1, i.e. a Rees algebra alone need not be unary.
Further, we have proved that a Rees variety is equivalent to a variety having strong
CEP although this need not be true for a single algebra, see Example 1. The following
propositions point out which single algebras has strong CEP.

Proposition 2. I/ XA is a Rees algebra then A has strong CEP (and thus
CEP).

Proor. Let 0 be an arbitrary congruence on a subalgebra B of 2. Evidently,
0 is a subalgebra of the square B XMW and so it is a subalgebra of the Rees algebra
WX AU. The diagonal w4 has the same property and, moreover, 0w, #0. Then,
using the former result of [8; Proposition 2.1, p. 230], 6Um, is also a subalgebra
of A XA which completes the proof.
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Proposition 3. Any idempotent Rees algebra has strong CEP.

Proor. Let B be a subalgebra of an idempotent Rees algebra 2[. We have to
hsow that 0w, £Con A for any congruence 6 on B. Take a unary algebraic
function ¢ over A and suppose (a,b)c0'Jw,. If ¢(a)#¢@(b) then (a, b)c0 and,

by Theorem 1 (3),
¢(a) =s(a, b), @(b)=t(a,b)

for some binary polynomials s, f of 2. Since 2 is idempotent, we have
(s(a, b), a) = (s(a, b, s(a, a))0,

{t(a, b), @) = (t(a, b), t(a, a))cb
and thus
{@p(a), p(b)) = (s(a, b), t(a, b))€H.

Hence (@(a), ¢(b))c0Jw,, which was to be proved.
The next theorem characterizes Rees varieties in terms of subalgebras:

Theorem 3. For a variety ¥ . the following three conditions are equivalent:

(1) ¥ is a Rees variety;
(2) subalgebras of each WcY~  are closed under set union;

3) Fyxas oo )= F(x).

Proor. By Theorem 2 (2), ¥* is at most unary, thus evidently (1)=(2). The
implication (2)=(3) is trivial. The condition (3) implies that ¥~ is at most unary.
Thus, by Theorem 2, also (3)=(1) is true.

Remark 3. Example 2 (2) shows that the characterization (2) of Theorem 3
does not hold for a single algebra. Nevertheless, the following local version of
Theorem 3 (2) can easily be verified:

Proposition 4. I/ subalgebras of WX W are closed under set union then W is
a Rees algebra.

PrROOF. Let B be a subalgebra of 2. Then B XV as well as w4 are subalgebras
of A xA. By the hypothesis, also BXBlw, is a subalgebra of A XA, ie. BX
X Bl w, is a congruence on A which was to be proved.
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