Rees algebras and their varieties

By IVAN CHAJDA (Přerov) and JAROMÍR DUDA (Brno)

Following [3, 8], a subalgebra \mathfrak{B} of an algebra \mathfrak{A} is called a *Rees subalgebra* whenever there exists a congruence θ on \mathfrak{A} such that $\langle x, y \rangle \in \theta$ if and only if either x=y or both x,y are elements of \mathfrak{B} . In this case, θ is called a *Rees congruence* on \mathfrak{A} induced by \mathfrak{B} . Rees congruences were introduced by \mathfrak{D} . Rees [6] for semigroups; Rees congruences on lattices were used by \mathfrak{G} . Szász [7] for a construction of special kind.

The present paper deals with algebras having Rees subalgebras only. They are called *Rees algebras*. Rees algebras are closely related to *Hamiltonian algebras*, see [5], and thus also with algebras having the *Congruence Extension Property*, see [4]. For basic concepts and notations used in this paper see [2]. We will write A, B, etc. for the universes of the algebras $\mathfrak{A}, \mathfrak{B}$, etc.

1. Basic concepts

In the sense of [5], an algebra $\mathfrak A$ is called *Hamiltonian* if and only if every subalgebra $\mathfrak B$ of $\mathfrak A$ is a block of the congruence $\theta(B\times B)$, where $\theta(B\times B)$ denotes the smallest congruence on $\mathfrak A$ collapsing B. In some particular cases, this congruence may be of the form $\theta(B\times B)=B\times B\cup \omega_A$, where ω_A denotes the diagonal of A. However, this form of $\theta(B\times B)$ is identical to that of [3]. In this way we introduce

Definition 1. An algebra $\mathfrak A$ is called a Rees algebra if $B \times B \cup \omega_A$ is a congruence on $\mathfrak A$ for every subalgebra $\mathfrak B$ of $\mathfrak A$. A variety $\mathscr V$ is a Rees variety if each $\mathfrak A \in \mathscr V$ is a Rees algebra.

Thus a Rees algebra is a special case of a Hamiltonian algebra. As it was proved by E. W. Kiss [4], every variety of Hamiltonian algebras has the Congruence Extension Property (briefly CEP). For this reason recall

Definition 2. An algebra A has CEP if every congruence on an arbitrary subalgebra of $\mathfrak A$ is a restriction of some congruence on $\mathfrak A$.

For Rees algebras, it will be useful to modify the definition of CEP in the following sense:

Definition 3. An algebra $\mathfrak A$ satisfies strong CEP whenever $\theta \cup \omega_A \in \text{Con } \mathfrak A$ for any congruence θ on a subalgebra $\mathfrak B$ of $\mathfrak A$.

A class of algebras & has CEP (strong CEP) if each algebra in & has CEP

(strong CEP).

Apparently, strong CEP implies CEP and any algebra having strong CEP is a Rees one. A natural question arises: does there exist a Rees algebra which has not strong CEP? The answer is positive:

Example 1. Let \mathfrak{A} be a four element groupoid given by its multiplicative table:

Clearly a subset $\mathfrak{B} = \{a, b, c\}$ forms a subgroupoid of \mathfrak{A} and \mathfrak{A} has no other proper subgroupoid. Clearly \mathfrak{A} is a Rees groupoid since $B \times B \cup \omega_A$ is a congruence on \mathfrak{A} . However, \mathfrak{A} has no strong CEP since the equivalence θ with classes $\{a, b\}$, $\{c\}$ is a congruence on \mathfrak{B} although $\theta \cup \omega_A$ is not a congruence on \mathfrak{A} because

$$\langle a, b \rangle \in \theta$$
, $\langle z, z \rangle \in \omega_A$ but $\langle a, c \rangle = \langle a \cdot z, b \cdot z \rangle \in \theta \cup \omega_A$.

2. Rees algebras

Theorem 1. For an algebra A, the following conditions are equivalent:

(1) At is a Rees algebra;

(2) every subalgebra of A generated by two elements is Rees;

(3) for every unary algebraic function φ over $\mathfrak A$ and any two elements a, b of $\mathfrak A$ we have either (i) $\varphi(a) = \varphi(b)$, or (ii) $\varphi(a) = s(a, b)$, $\varphi(b) = t(a, b)$ for some binary polynomials s and t of $\mathfrak A$.

PROOF. (1) \Rightarrow (2) is trivial. Prove (2) \Rightarrow (3): Let φ be a unary algebraic function over $\mathfrak A$ and $a, b \in \mathfrak A$. Let $\mathfrak B$ be a subalgebra of $\mathfrak A$ generated by elements a, b. Then, using (2), $B \times B \cup \omega_A$ is a congruence on $\mathfrak A$ containing the pair $\langle a, b \rangle$. Consequ-

ently, also $\langle \varphi(a), \varphi(b) \rangle \in B \times B \cup \omega_A$, whence (3) is evident.

 $(3)\Rightarrow(1)$: Let \mathfrak{B} be an arbitrary subalgebra of \mathfrak{A} . We have to show that the binary relation $B\times B\cup \omega_A$ is a congruence on A. Evidently, it suffices to verify the Substitution Property only: choose $\langle a,b\rangle\in B\times B\cup \omega_A$ and a unary algebraic function φ over \mathfrak{A} . Applying the hypothesis (3), we have either (i) $\varphi(a)=\varphi(b)$ or (ii) $\varphi(a)=s(a,b)$ and $\varphi(b)=t(a,b)$ for some binary polynomials s,t of \mathfrak{A} . Clearly the first case means that $\langle \varphi(a), \varphi(b)\rangle\in \omega_A$. Suppose $\varphi(a)\neq \varphi(b)$. Then $\langle a,b\rangle\in E\times B$ and thus by (ii),

$$\langle \varphi(a), \varphi(b) \rangle = \langle s, (a, b), t(a, b) \rangle \in B \times B.$$

Summarizing, we get

$$\langle \varphi(a), \varphi(b) \rangle \in B \times B \cup \omega_A$$

which clearly implies the Substitution Property.

Example 2. (1) For a group 6, the following two conditions are equivalent:

(a) 6 is a Rees group;

(b) $\mathfrak{G} \cong \mathbb{Z}_p$, the cyclic group of prime order.

PROOF. (a) \Rightarrow (b): Let \mathfrak{H} denote a subgroup of \mathfrak{G} . By the hypothesis, $H \times H \cup \omega_A$ is a congruence on \mathfrak{G} . Now, the regularity of groups (see e.g. [1]) implies $\mathfrak{H} = \mathfrak{G}$ or $\mathfrak{H} = \{0\}$, whence the conclusion $\mathfrak{G} \cong Z_p$, p prime, follows. The converse implication (b) \Rightarrow (a) is trivial since Z_p , p prime, has no proper subgroup.

(2) For a semilattice \mathfrak{S} , the following two conditions are equivalent:

(a) S is a Rees semilattice;

(b) the length of & is at most 1.

PROOF. (b) \Rightarrow (a) is trivial. Prove (a) \Rightarrow (b). Suppose that the length of $\mathfrak S$ is at least 2. Then $\mathfrak S$ contains a three element chain a < b < c. Consequently, $\{a, c\}$ is a subsemilattice of $\mathfrak S$ and, by the hypothesis, $\{a, c\}$ is a block of some congruence on $\mathfrak S$. However, any congruence block is convex, which is a contradiction.

(3)⇒(2) holds also for lattices.

(4) Every unary algebra is a Rees algebra.

PROOF. This is a trivial consequence of Theorem 1 (3).

Proposition 1. Being a Rees algebra is hereditary for subalgebras and homomorphic images.

PROOF. The first assertion is evident. Further, let $h: \mathfrak{A} \to \mathfrak{A}'$ be a homomorphism of \mathfrak{A} onto \mathfrak{A}' and \mathfrak{B}' be a subalgebra of \mathfrak{A}' . Put $\mathfrak{B} = h^{-1}(\mathfrak{B}')$. Then, by the hypothesis, $B \times B \cup \omega_A$ is a congruence on \mathfrak{A} . It is routine to verify the formula

$$(h \times h)(B \times B \cup \omega_A) = B' \times B' \cup \omega_{A'}$$

which implies that $B' \times B' \cup \omega_{A'}$ is a subalgebra of the square $\mathfrak{A}' \times \mathfrak{A}'$. Thus $B' \times B' \cup \omega_{A'}$ is a congruence on \mathfrak{A}' which finishes the proof.

Remark 1. The class of all Rees algebras of the same type is not closed under forming direct products: consider the two-element semilattice (or lattice) \mathfrak{C}_2 . Then the direct product $\mathfrak{C}_2 \times \mathfrak{C}_2$ is not a Rees semilattice (or lattice, respectively).

3. Characterizations of Rees varieties

Although Rees algebras of the same type need not form a variety, there exist varieties of algebras whose all members are Ress algebras as we can see in Example 2 (4). It motivates our aim to characterize such varieties.

Let \mathscr{V} be a variety. An *n*-ary polynomial p of \mathscr{V} is called *essentially k-ary* $(0 \le k \le n)$ on the variety \mathscr{V} , if the polynomial p on the countably generated free algebra of \mathscr{V} depends on exactly k variables, see [1]. We say that \mathscr{V} is at most unary if every polynomial p of \mathscr{V} is either essentially unary or essentially nullary.

Further, denote by $F_n(x_1, ..., x_n)$ the free algebra of $\mathscr V$ generated by the set

of free generators $\{x_1, \ldots, x_n\}$.

Recently, E. W. Kiss [4] has proved that any variety of Hamiltonian algebras has CEP. In this section we discuss the relationship between Rees varieties and strong CEP; moreover, we present different characterizations of Rees varieties.

Theorem 2. For a variety \mathcal{V} , the following conditions are equivalent:

(1) \(\nabla \) is a Rees variety;

(2) V is at most unary;

(3) every algebraic function over $\mathfrak{A} \in \mathscr{V}$ is either a constant or a polynomial;

(4) for every unary algebraic function φ over $\mathfrak{A} \in \mathscr{V}$ and any two elements a, b of \mathfrak{A} , either (i) $\varphi(a) = \varphi(b)$ or (ii) there exists a unary polynomial u of \mathscr{V} such that $\varphi(a) = u(a)$, $\varphi(b) = u(b)$;

(5) \$\notal has strong CEP.

PROOF. (1) \Rightarrow (2): Let \mathscr{V} be a Rees variety. Consider the free algebra $F_{2+n}(x, y, z_1, \ldots, z_n)$. Suppose f is an (n+1)-ary polynomial of \mathscr{V} depending on the first variable. Then $\varphi(v) = f(v, z_1, \ldots, z_n)$ is a unary algebraic function over $F_{2+n}(x, y, z_1, \ldots, z_n)$ and, by Theorem 1 (3), we have either (i) $f(x, z_1, \ldots, z_n) = f(y, z_1, \ldots, z_n)$ or (ii) $f(x, z_1, \ldots, z_n) = s(x, y)$ and $f(y, z_1, \ldots, z_n) = t(x, y)$ for some binary polynomials s and t of \mathscr{V} . The case (i) is impossible since f depends on the first variable. The second case (ii) implies $f(x, z_1, \ldots, z_n) = t(x, x)$, i.e. f is at most unary.

The implications $(2)\Rightarrow(3)\Rightarrow(4)$ are evident. Prove $(4)\Rightarrow(5)$. Let $\mathfrak B$ be an arbitrary subalgebra of an algebra $\mathfrak A\in\mathscr V$. Further, let θ be a congruence on $\mathfrak B$. We have to show that the trivial extension $\theta\cup\omega_A$ of θ is a congruence on $\mathfrak A$. Let φ be a unary algebraic function over $\mathfrak A$ and $\langle a,b\rangle\in\theta\cup\omega_A$. Suppose $\varphi(a)\neq\varphi(b)$. Then $\langle a,b\rangle\in\theta$ and, by the hypothesis (4),

$$\varphi(a) = u(a), \quad \varphi(b) = u(b)$$

hold for some unary polynomial u of \mathcal{V} . Thus

$$\langle \varphi(a), \varphi(b) \rangle = \langle u(a), u(b) \rangle \in \theta$$

which completes the proof.

The implication $(5) \Rightarrow (1)$ is trivial.

Remark 2. Examples 2 (1), (2) and (3) show that condition (4) of Theorem 2 is weaker than part (3) of Theorem 1, i.e. a Rees algebra alone need not be unary. Further, we have proved that a Rees variety is equivalent to a variety having strong CEP although this need not be true for a single algebra, see Example 1. The following propositions point out which single algebras has strong CEP.

Proposition 2. If $\mathfrak{A} \times \mathfrak{A}$ is a Rees algebra then \mathfrak{A} has strong CEP (and thus CEP).

PROOF. Let θ be an arbitrary congruence on a subalgebra \mathfrak{B} of \mathfrak{A} . Evidently, θ is a subalgebra of the square $\mathfrak{B} \times \mathfrak{B}$ and so it is a subalgebra of the Rees algebra $\mathfrak{A} \times \mathfrak{A}$. The diagonal ω_A has the same property and, moreover, $\theta \cap \omega_A \neq \emptyset$. Then, using the former result of [8; Proposition 2.1, p. 230], $\theta \cup \omega_A$ is also a subalgebra of $\mathfrak{A} \times \mathfrak{A}$ which completes the proof.

Proposition 3. Any idempotent Rees algebra has strong CEP.

PROOF. Let $\mathfrak B$ be a subalgebra of an idempotent Rees algebra $\mathfrak A$. We have to hsow that $\theta \cup \omega_A \in \operatorname{Con} \mathfrak A$ for any congruence θ on $\mathfrak B$. Take a unary algebraic function φ over $\mathfrak A$ and suppose $\langle a,b\rangle \in \theta \cup \omega_A$. If $\varphi(a) \neq \varphi(b)$ then $\langle a,b\rangle \in \theta$ and, by Theorem 1 (3),

$$\varphi(a) = s(a, b), \quad \varphi(b) = t(a, b)$$

for some binary polynomials s, t of \mathfrak{A} . Since \mathfrak{A} is idempotent, we have

$$\langle s(a, b), a \rangle = \langle s(a, b), s(a, a) \rangle \in \theta,$$

 $\langle t(a, b), a \rangle = \langle t(a, b), t(a, a) \rangle \in \theta$

and thus

$$\langle \varphi(a), \varphi(b) \rangle = \langle s(a, b), t(a, b) \rangle \in \theta.$$

Hence $\langle \varphi(a), \varphi(b) \rangle \in \theta \cup \omega_A$, which was to be proved.

The next theorem characterizes Rees varieties in terms of subalgebras:

Theorem 3. For a variety V, the following three conditions are equivalent:

- (1) V is a Rees variety;
- (2) subalgebras of each 𝔄∈𝑉 are closed under set union;

(3)
$$F_n(x_1, ..., x_n) = \bigcup_{i=1}^n F_1(x_i)$$
.

PROOF. By Theorem 2 (2), \mathscr{V} is at most unary, thus evidently $(1)\Rightarrow(2)$. The implication $(2)\Rightarrow(3)$ is trivial. The condition (3) implies that \mathscr{V} is at most unary. Thus, by Theorem 2, also $(3)\Rightarrow(1)$ is true.

Remark 3. Example 2 (2) shows that the characterization (2) of Theorem 3 does not hold for a single algebra. Nevertheless, the following local version of Theorem 3 (2) can easily be verified:

Proposition 4. If subalgebras of $\mathfrak{A} \times \mathfrak{A}$ are closed under set union then \mathfrak{A} is a Rees algebra.

PROOF. Let \mathfrak{B} be a subalgebra of \mathfrak{A} . Then $\mathfrak{B} \times \mathfrak{B}$ as well as ω_A are subalgebras of $\mathfrak{A} \times \mathfrak{A}$. By the hypothesis, also $B \times B \cup \omega_A$ is a subalgebra of $\mathfrak{A} \times \mathfrak{A}$, i.e. $B \times B \cup \omega_A$ is a congruence on \mathfrak{A} which was to be proved.

References

- [1] B. Csákány, Congruences and subalgebras, Annales Univ. Sci. Budapest, sectio Math. 18 (1975), 37-44.
- [2] G. GRÄTZER, Universal Algebra, 2-nd edition, Springer 1979.
- [3] P. KIRSCHENHOFER, R. F. TICHY, Polynomalgebren und Diskrepanz, Sitzungsberichten der Österreich, Akad. Wiss. Mathem.-natur. Kl., 189 (1980), 321—339.
- [4] E. W. Kiss, Each Hamiltonian variety has the Congruence Extension Property, Alg. Univ. 12 (1981), 395-398.
- [5] L. Klukovits, Hamiltonian varieties of universal algebras, Acta Sci. Math. (Szeged), 37 (1975), 11-15.
- [6] D. Rees, On semigroups, Proc. Cambridge Phil. Soc. 36 (1940), 387—400.
 [7] G. Szász, Rees factor lattices, Publ. Math. (Debrecen) 15 (1968), 259—266.
- [8] R. F. TICHY, The Rees congruence in universal algebras, Publications de l'Institut Math. 29 (43), (1981), 229-239.

AUTHORS' ADDRESSES: IVAN CHAJDA TŘÍDA LIDOVÝCH MILICÍ 22 750 00 PŘEROV, CZECHOSLOVAKIA

JAROMÍR DUDA KROFTOVA 21 616 00 BRNO, CZECHOSLOVAKIA

(Received May 13, 1983)