Problems connected with the constant regression
of quadratic statistics on linear statistics

By B. GYIRES (Debrecen)

1. Introduction and the results

Denote by R(n, m) the set of n by m matricas with real entries. B*€ R(m, n)
denotes the transpose of B¢ R(n, m)+ec R(n, 1) is the vector with all components 1.
Let the trace of 4=(a;)¢R(n, n) be different from zero, and let

Q =x"Ax, x=(x;)€R(n,1).
The quadratic form

1 n
P(Q) = ?Z;én A j Xy, Xy,

is said to be the adjoint quadratic form of @ ([1], p. 799), where the first summation
runs over all permutations iy, ..., #, without repetition of the first n integers.
After a short computation we get that ([2])

P(Q) = x*Cx, x€R(m 1),

where C€ R(n, n) is the matrix with diagonal elements

(1.1) a=-]-trA.i0,
n

and the remaining entries are equal to

e*Ade—tr A

C is said to be the associated matrix of 4. Since the eigenvalues of C are ([2],
Theorem 4.3.)
(1.3) a+mn—1)b, a—>b
C is positive semidefinite if and only if

(1.4 ntrA =e*de, or e*Ae =0,
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and positive definite if and only if
ntr A = e*Ae = 0.

Conditions (1.1) and (1.4) involve that we suppose that a=0 in our treatment.
We shall see, we use several time the fact in the following that C is a positive definite
or semidefinite matrix. For that we did not deal with the case of a=0, since C is
positive semidefinite by virtue of (1.4) if b=0, i.e. all entries of C are equal to zero
in this case.

Denote by V,C R(n, 1) the set of vectors with components different from zero
satisfying the following condition: Using notation o'=(aj)eV, if a=(x)cV,,
then let

(1.5) S,=e€a"#0 (v=0,1,2,...).
The aim of this paper is to prove the following Theorems.

Theorem 1.1. Let A€ R(n,n) with positive trace, and with positive definite or
semidefinite associated matrix be given. Let a€V,. Let X€R(n,1) be a random
vector variable. Let the components of X be a sample from a population, which has
zero expectation, and a finite variance different from zero. Suppose that Q=X"AX
has constant regression on Y =o"X. In this case the components of X are normally
distributed random variables if and only if e*Ae=0, and o=vye, where y#0 is an
arbitrary constant.

Author dealt in his papers [2] and [3] with the question, what sufficient condi-
tions must be satisfied by vectors «€ ¥, in order that statistics Q let have constant
regression on Y, if the components of X are normally disributed. Theorem 1.1.
says that this is possible if and only if a=e except for a constant factor. This result
suggests us that this is the same in generally too. I.e. Q has constant regression on
Y if and only if x=e except for a constant factor. The following two theorems
show us that this statement does not hold.

Theorem 1.2. Let A€ R(n,n) with positive trace, and with positive definite or
semidefinite associated matrix be given. Moreover let tr A=e" Ae. Let acV,. Assume
that X€ R(n, 1) is a random vector variable. Let the components of X be a sample
from a population, which has zero expectation, and a finite variance ¢*=0. In this
case Q=X"AX has constant regression on Y=o"X if and only if the components of
X are uniformly distributed random variables with two discontinuity points ¢ and —o.

Theorem 1.3. Let A€ R(n,n) with positive trace be given. Let «cV, be a
vector with components +1, and —1. Let X€R(n, 1) be a random vector variable.
Let the components of X be a sample from a population with symmetric distribution
Junction on the origin, and with a finite variance ¢*=0. Let

(1.6) p= !+%[ST12—1].

Then the statistic Q=X"AX has constant regression on Y =uo'X
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a) if and only if 1/p is a positive integer. In this case the characteristic function
f(1) of the components of X is the following.
o /
f() = [cos (to p)]" P 1ER(1, 1)
b) If and only if p is an arbitrary negative number. In this case

£ = [ch(taV=p)]""", 1R, 1).

¢) In the case of p=0 if and only if
f(1) = exp [*%: :2].

From Theorems 1.1. and 1.3. we get the following result (cp. [9], Theorem 3).

X Corollary 1.1. Let A=R(n,n) with positive trace, and with positive definite,
or semidefinite associated metrix be given. Let X¢ R(n, 1) be a random vector vari-
able. Let the components of X be a sample from a population, which has zero expec-
tation, and a finite variance 6*=0. Then Q=X*AX has constant regression on
Y=e'X either if e*Ae=0, while the components of X are normally distributed
random variables, or if e*Ae=0 and if

1  trd
p e'Ae

is a positive integer. In this case the characteristic function of the components of X is
[cos(ra yp)]'”, 1 R(1, 1).

In his paper [4] the author proved the following (Corollary 2). If the assumption
of Corollary 1.1. of this paper is satisfied, and if the components of X are infinitely
divisible random variables, then Q has constant regression on ¢*X if and only if
e Ae=0, 1e. the components of X are normally distributed random variables.
Theorem 5 of paper [5] asserts the same statement without the condition of the
infinitely divisibility. From Corollary 1.1. of this paper the just mentioned Theorem
1s incomplete. Professor D. N. SHANEHAG was kind to call my attention to this
circumtance in a letter.

These investigations would be completely closed, if Theorem 1.3. would be
extended in the more generally case too, if 2€V, is an arbitrary vector, and if the
condition that the distribution function of the components of X is a symmetric
function on the origin is not satisfied. To do this it needs the solution of a more
complicated differential equation, as which was solved connected with the proof
of Theorem 1.3. It seems it is very difficult to solve the just mentioned more general
differential equation.

In section 2 we deal with Lemmata, which are necessary to the proof of the
Theorems, and of Corollary 1.1. In section 3 we give the proof of the Theorems,
and of Corollary 1.1.
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2. Lemmata
Lemma 2.1. Let a=(x;)€V,, and let k and | be arbitrary positive add integers
Then
(2.1) Si 8 = nS, 4,
with equality if and only if x=ye, where y=0 is an arbitrary real constant.

Proor. From the statement 368 of [6] it can show the following inequality.
If the real numbers a;,b; (j=1, ..., n) satisfy inequality

(2.2) aG=.=a, b=..=bh,

then

2.3) 2a; 2b;=n Ja;b
j=1 j=1 ji=1

with equality if and only if either a,=a,, or b;=b,.
Without loss of the generality let o,=...=«,. Then the numbers

a;=aof, by=0a (j=1,..,n)

satisfy inequalities (2.2). Thus inequality (2.3), i.e. inequality (2.1.) holds with equ-
ality if and only if o,=2,.
Lemma 2.2. Let /. and ¢ be real numbers, and suppose that p=0. Then
f()=][ch(in]~% ¢tcR(1,1)

s an infinitely divisible characteristic function.

PrROOF. Lemma 2 of the paper [9] says that if @, ¢ and 4 are three real numbers,
and suppose that ¢=0, then

fo(20) = [ch (A)+ia sh (A1)]~¢, t€R(1,1)
is an infinitely divisible characteristic function. Since

ch (241) = ch? (ir) +sh® (A1),
identity

rar=s( i)
gives us the proof of the statement.
Lemma 2.3. Let ., and o be real numbers, and suppose that ¢ =0. Then
(2.4) [cos (A2, t€R(1,1)
is a characteristic function if and only if o is a positive integer.

PROOF. It is obviously that cos (A7) is the characteristic function of the purly
discrete uniform distribution with two discontinuity points 4, and — 4, respectively.
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Lemma 2.3.1. Let m be a real number, and assume that m=0. In this case
(cos )™+ is a characteristic function if and only if (cos 1)™ is a characteristic func-
tion.

Proor. Since cost is a characteristic function, it is obvious if (cos )™ is a
characteristic function, then (cos 7)™ *! is a characteristic function too.

Let us suppose that (cos 7)™*? is a characteristic function. Let M be an arbit-
rary positive integer, moreover let #; (j=1, ..., M) be real numbers different from
one another. Then we get from the Bochner’s Theorem that the symmetric matrix

Api1 = ([COS (1 _!l)]aH‘l)E!:I

is positive definite or semidefinite. Using identity

cos (t,—1) = iz[e‘('k“'l’+e“'a"u‘].
we get that
Apsy = %[DA,,, D*+D*A,, D)
where D is the diagonal matrix with diagonal elements e« (k=1..... M). and D*
denotes now the conjugate transpose of D. Thus
xX*Ap1x=x"(D4,D)x =0, x€ER(M,1).

Since D*A,,D is a Hermitian matrix, we conclude from the last identity that D* A4, D,
thus A4, too is a positive definite, or semidefinite matrix. Since M, and ¢; (j=1, .... M)
are arbitrary, using Bochner’s Theorem again, we get that (cos r)™ is a characteristic
function in conformity with our statement.

It is obvious the following Lemma.

Lemma 2.3.2. If ¢ is a positive integer, then (2.4) is a characteristic function.

Lemma 2.3.3. I/ o=N is a positive integer, then characteristic function (2.4.)
has exactly N indecomposable factors. ([7], 5.1.)

Proo¥. Under the assumption of the Lemma, (2.4) is the characteristic function
of the purly discrete uniform distribution with discontinuity points (N—2k)4
(k=0,1,...; N). Since these discontinuity points are the consecutive terms of a
finite arithmetic sequence, the statement of the Lemma follows directly ([7], p. 124).

Lemma 2.34. If o=r/s, where r=s are relative prime integers, then (2.4)
is not a characteristic function.

Proor. If (2.4) would be a characteristic function, then we conclude from iden-

tity
[f (OF = [cos (AD)])

that characteristic function [cos (A7)]" has at least s=r indecomposable factors
contradicting to the statement of Lemma 2.3.3.

Lemma 2.3.5. If the rational number ¢ is not an integer, then (2.4) is not a
characteristic function.
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ProOOF. If 0= p<1, the statement is contained in Lemma 2.3.4. Let o= N +(r/s),
where N=1 is an integer, moreover r—<s are relative prime integers. Let us suppose
that (2.4) is a characteristic function. Using Lemma 2.3.1. we get that [cos (A1)]"/*
is a characteristic function too, contradicting to Lemma 2.3.4.

Lemma 2.3.6. /If o=ua is an irrational number, then (2.4) is not a characteristic
Jfunction.

Proor. Let [x] be the largest integer not greater then «, and let {a}=a—[a].
It is obvious that 0= {a}<=1. We can suppose that O=x=<1. Namely (cos ),
and (cos 1) are characteristic functions, or not in the same time by the Lemma
2.3.1.

Let now g¢=2a,, where O=o;=1 is an irrational number. If (2.4) is a charac-
teristic function, then [cos (Af)]¥* is a characteristic function too for arbitrary
positive integer M. Using Lemma 2.3.1., we get that [cos (A1)]*» is a characteristic
function too, where oy = {Mu,}. If we apply the well-known Theorem of H. WEIL
[10], we get that the elements of the sequence (xy )3~ are everywhere dense on the
interval [0, 1]. Therefore if O<r=1 1is a rational number, there is a subsequence
(2§)si-1 of (ay)ii-1 such that off —r, if M-<. Thus we obtain from the
Continuity Theorem that

,‘;i,"l [cos (/'.f)]";?) = [cos (AD)]

is a characteristic function. But this result contradicts to Lemma 2.3.4.
Lemmata 2.3.2., 2.34., 2.3.5. and 2.3.6., respectively, give us the proof of
Lemma 2.3.

3. The proofs

3.1. We say that Q= X" AX has constant regression on Y =o"X if the identity
E(Qe") = E(Q)E(e"Y), t€R(1,1)
holds ([8], 6.2.). It can show ([1]. Lemma 4.1.) if Q has constant regression on Y,

then P(Q) has constant regression on Y too. Thus the second characteristic ([7], 2.4.)
@()=Ilg f(1) satisfies the differential equation

(3.1) a 2o (a;0)+a 2o (;0P+b 3 ¢'(a;0) ¢ (2 1) = —aa*n
Jm3 J=1 k=1
=k

in the neighbourhood of the origin ([2]), where ¢, = —0¢* It can show by the
help of (3.1) that all derivatives of ¢(r) exist. Namely

PR =0 (k=0,1,..),
moreover the recursion-formula

= 3 (o) e ol @y coenen,
(2v4+2) _ 9y Em3
(32) Do) r=1, 2 )
Pl =—0*

holds.
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It can prove ([1], Theorem 4.3.), if C is a positive definite, or semidefinite matrix,
then the characteristic function of the components of X is an antire function. In
our case the representation

(3 3) I - (plg;’j t2v

holds in a neighbourhood of the origin.
Since the diagonal elements of matrix C are equal to a, and the remaining
entries are equal to b, we get that
(@*-Y)* Ca¥-P+1 = (g b) Ss,+bSa -1 Ss(y-1y+1 =
= [a+(n—1)b] Sy, — b[nSys, — Sax -1 Sa(y—xy+1]-

Thus formula (3.2) can be expressed in the following way.

(3.4) o6 =*['+(" e ] (n 1]4!’2%3"40("" e
Sap_1:8ar .
(3) o A(v—k+1)) SRRl v ¥ )
2 ](Pw) [ St ] R
where
_Szk—l‘ngv—kl-u =0 (k: l....., p)
2v

by Lemma 2.1., with equality if and only if a=y¢ with parameter y=0.

3.2. The proof of Theorem 1.1.

In order that (3.3) let be the second characteristic of a normally distributed
random variable, it is necessary the satisfaction of the condition ¢{i=0, i.e. the
satisfaction of the equality

(3.5) a*Co = (a—b) 3 a2 +b(3 ) =0
J=1 J=1
by a=(a;)€V, from (3.2). In this case C is a singular matrix, i.e. either a=b, or
a+(n—1)b=0 using (1.3). In consequence of (1.3) we have b0 in the both cases.
If a=b, then Z' ;=0 by (3.5) contradicting to the condition (1.5).

Let a+(n—l)b 0 ie. a—b=—nb. Thus we get using (3.5) that ¢{§)=0
if and only if

(Zu,'“j)szn 2“?»
i=1 =1

1.e. a=ye from the Schwarz inequality, where y=0 is a constant. In this case
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recursionformula (3.4) is reducible to
@) =—0%

(3.6) oy € Ae 2 ( 2 Ao
o =-S5 2,0 o otem =120

In consequence of (1.1) and (1.2) we obtain

a+(n—1)b=“"':".

Thus we have
(p}%}’”’ =0, =12 .:2)

by (3.6) if condition ¢{§)=0 is satisfied, i.e. in a neighbourhood of the origin

"

ag

() = ) 2.
Since /(1) is an entire function, we get that
0-2
3.7 f(1) = exp {—Trz}. 1ER(1, 1),

which was to be proved.

3.3. The proof of Theorem 1.2.

If =0, then differential equation (3.1) reduces to

(3.8) 20" (;0+ 2 ¢ (a,0)]*+na* = 0.
Jj=1 Ji=1
Moreover we get from (3.4) that the solution of (3.8) is independent of «€V,. le.
differential equation (3.8) reduce to
" () +[¢"(DF+0* =0,

which has the only solution f(f)=cos (a1), since ¢(¢) is the second characteristic
of an uniformly distributed discret random variable with discontinuity points o
and —a, respectively.

3.4. The proof of Theorem 1.3.
Since ¢(¢) is an even real function, we get that ¢’(7) is an add, and ¢”(7) is an
even function. Using this remark in (3.1) we obtain the differential equation
(3.9 Yy +pyitet=0

with p defined by (1.6) by the notation y=y(f)=¢’(¢). In following we give the
solution of (3.9) under the initial condition

(3.10) y0) =0, y(0)=-6*<0
in a neighbourhood of the origin in the cases if p=0, and if p<=0, respectively.
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34.1. Let p=0. Separating the variables, (3.9) can be written in the form
1 dy

—— ——— =l
2 2
"1+

Since y(0)=0, we receive that ¢(7) is an even function, consequently one is a real
function ([4], Theorem), thus y(¢) is real function too.
Let us integrate both sides of (3.11) we have

(3.11)

@) = —i%-tg [eVp(r+1],

where y is an arbitrary real constant. Let us differentiate the last function, we get
according to the initial condition (3.10) that »’(0)= —¢* if and only if y=0. Taking
this into consideration, we obtain that

() = lg £ (1) = 1g{C[cos (s} p1)]""}.
Using the initial condition f(0)=1 ((3.10)), we have C=1. Thus

(3.12) f(0) = [cos(aVp)]"*

in a neighbourhood of the origin. Since (3.12) is an entire function the representation
(3.12) holds if t runs over the whole real line.

Using Lemma 2.3. we get the proof of the statement a).

342. Let p=—q-=0. Separating the variables, (3.9) can be written in the
form

(3.13) @

: . = dt
i ] R
viile
where y(7) is a real function. After the integration of the both sides of (3.13) we
obtain that
v === th (e Vq+7)
'q

where y is an arbitrary real constant. Let us differentiate the last function, we get
accordin to the inicial condition (3.10) that y(0)= —¢* if and only if y=0. Thus

o) =1g (1) =1g{c[ch (s Vg )]}
Using the initial condition f(0)=1 ((3.10)). we have that ¢=1. Thus

(3.14) f@ = [ch(cyVgn]™

in a neighbourhood of the origin. Since (3.14) is an entire functic:, representation
(3.14) holds if reR(1, 1).
Taking Lemma 2.2. ibto consideration, we obtain of the proof of statement b).
3.4.3. The statement ¢) is trivial.
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3.5. The proof of the Corollary 1.1.

The first statement follows immediatelly from Theorem 1.1. The conditions of
Theorem 1.3. are satisfied too. Namely the characteristic function of the components
of X is a real even function, and p=0.
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