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Introduction

Throughout this note by a near-ring we mean a zerosymmetric right near-ring.
A near-ring N is said to be strongly regular if a€ Na* for each a€N. In this note
we prove that if N is a strongly regular near-ring, then N has maximum condition
on ideals if and only if N has minimum condition on ideals. We also present an
affirmative answer to an open problem raised by MAsON (See remark on page 33
of [5)]).

If S is a nonempty subset of a near-ring N, we write /(S)={x€N/xS={0}}
and r(S)={xcN/Sx={0}}. It is easy to verify that if N is a near-ring without
nonzero nilpotent elements then /(S)=r(S) and this is an ideal of N. For termi-
nology and notation, we refer to [7]. Recall that a near-ring N is called regular if for
each a€ N there exists x€ N such that a=axa. A near-ring N is said to have the
IFP if for any a,b in N, ab=0 implies anb=0 for each ne€N.
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For convenience, we first state a lemma whose proof follows from propositions
9.37 and 9.43 of [7].

Lemma 1. Suppose N is a near-ring without nonzero nilpotent elements. Then
(1) N has the IFP,

(i) For any a,beN, ab=0 implies ba=0,

(iii) en=ene for any idempotent e and any n¢cN.

The following lemma has been proved in several papers (eg [8]). The converse
is also true, indeed in a more general set-up (see theorem 12).

Lemma 2. Suppose N is a strongly regular near-ring. Then
(1) N has no nonzero nilpotent elements,
(i) N is regular.

In ring theory it 1s well known that [3, proposition 2.28] if R is a strongly regular
ring then every one sided ideal is two sided. But in case of near-rings MASON [5]
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showed that if N is a strongly regular near-ring with identity, then every N-subgroup
of N is an ideal. Our next result is a generalization.

Lemma 3. If N is a strongly regular near-ring, then I(r(Na))=Na for each
a in N. Moreover, each N-subgroup is an ideal of N.

Proor. Let a€N. Since N is regular, there is an idempotent e in N such that
Na=Ne. Clearly Nacl(r(Na)). If x€l(r(Na)) then xr(Na)={0}. Since e is an
idempotent, by lemma 1 (i), we have x—xe€/(Ne)=r(Ne)=r(Na). Hence
xX(x—xe)=0. So xe(x—xe)=0, by lemma 1 (i) and hence (x—xe)*=0. There-
fore x=xec Ne=Na. Thus Na=I(r(Na)) is an ideal of N. It is now easy to show
that each N-subgroup is an ideal of N.

Lemma 4. /f N is a strongly regular near-ring, then N is isomorphic to a sub-
direct product of near-rings N;, where in each N;, N;x= N, for each nonzero x in
N; and each nonzero idempotent in N; is a right identity.

Proor. From [2, theorem 3.2] and lemma 3, it follows that the intersection of
all maximal ideals is {0}. Hence N is isomorphic to a subdirect product of simple
near-rings N;. But from lemma 3, for each 0:#x€N;, N;x is a nonzero ideal and
hence N;x=N;. Thus each N, has no zero divisors and hence each nonzero idem-
potent in N; is a right identity.

Corollary 5. ([8, theorem 2]). /fin a strongly regular near-ring N, every nonzero
homomorphic image contains a nonzero distributive element then N is isomorphic
to a subdirect product of near-fields and hence (N, +) is abelian.

The proof of this corollary follows directly from lemma 4 and [7, theorem 8.3,
p. 237].

Corollary 6. Let N be a strongly regular near-ring. If N contains a left iden-
tity, then (N, +) is abelian.

Corollary 7. ([4, theorem 3]). If in a near-ring N, for each x there exists
n(x)=1 such that x"* =x, then N is isomorphic to a subdirect product of near-rings
N; where N; is either a near-field or N;x=N; for each 0=x in N; and each
nonzero idempotent element of N; is a right identity.

In ring theory it is well known that [3, proposition 1.29] if R is a regular ring
then for any a, b in R there is an element ¢ in R such that Ra+ Rb=Rc. We now
obtain this result for strongly regular near-rings. But it is not known whether this
result is true for regular near-rings.

Lemma 8. If N is a strongly regular near-ring then for any a,b in N there is
an element ¢ such that Na+ Nb= Nc.

ProOF. Since N is regular, there exists idempotents e and f such that Na= Ne
and Nb=Nf. Now Ne is an ideal by lemma 3. So, f=f*=ff—f(f—fe)+f(f—fe)¢
ENe+N(f—fe). Thus Ne+ NfS Ne+ N(f—fe). Clearly f—fe€ Nf+ Ne=Ne+ Nf.
Hence N(f—fe)S Ne+Nf and Ne+ N(f—fe)S Ne+ Nf. Therefore Ne+ Nf=
=Ne+ N(f—fe). Let g be an idempotent such that N(f—fe)=Ng. Clearly ge=0.
By lemma 1 (ii), it follows that eg=0 and so by lemma 1 (iii) e(e+g)=e(e+g)e=
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=e*=e and g(e+g)=gle+g)g=g*>=g. Thus e, gc N(e+g) and so, Ne+NgC<
C N(e+g). Since e+gecNe+ Ng, we have N(e+g)<S Ne+ Ng. Therefore Ne+
+ Ng=N(e+g) and Na+ Nb=Ne+ Ng=N(e+g).

For a ring with an identity, it is well known that the minimum condition on
right ideals implies the maximum condition on right ideals. Since in a strongly
regular ring every one sided ideal is two sided ideal ([3, proposition 2.28]), it follows
that in a strongly regular ring with identity the minimum condition on ideals implies
the maximum condition on ideals. Theorems 3.2 and 2.7 of [6] shows that if Nis a
regular near-ring with dcc on N-subgroups, then it has maximum condition on
N-subgroups. From lemma 3, it evidently follows that for a strongly regular near-
-ring the maximum condition on ideals implies the maximum condition on ideals.
We now prove the converse of this result.

Theorem 9. Suppose N is a strongly regular near-ring. If N has maximum
condition on ideals, then it has minimum condition on ideals.

Proor. By lemma 3, for any @ in N the principal ideal generated by a is Na.
Since N has maximum condition on ideals, every ideal L of N is finitely generated.
By lemma 8 L is a principal ideal and hence an annhilator ideal by lemma 3. Thus
every ideal of N is an annhilator ideal.

Suppose 5 25,2...21,2... is a chain of ideals. Then I(/)E/(/)E...
.. £I(1,)< ... 1s an ascending sequence of ideals and hence by the maximum condition
there is a positive integer k such that /(1,)=I(/,) for all n=k. Hence r(I(1,))=
=r(/(fy)) for all n=k and since every ideal is an annhilator ideal, it follows that
1,=1, for all n=k. Thus N has minimum condition on ideals.
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In ring theory, it 1s well known that if every nilpotent element is in the centre
then every idempotent is in the centre. Hence a regular ring without nilpotent ele-
ments is strongly regular. In [5], Mason raised the following question: If in a regular
near-ring N each nilpotent element is in the centre, then is it true that N is strongly
regular? In the following we prove an affirmative answer to this question. We now
establish a generalized result. To this end we introduce the following

Definition 10. A near-ring N is said to be symmetric if @*=0 implies {(a)*={0}.
where (a) is the principal ideal generated by a.

Remark 11. The class of all symmetric near-rings contains the class of all
near-rings without nilpotent elements, the class of all near-rings which have IFP
and the class of all near-rings in which nilpotent elements are in the centre.

Theorem 12. Suppose N is a regular near-ring which is also symmetric. Then
N is a strongly regular near-ring.

Proor. We first show that N has no nonzero nilpotent elements. Let s€N
with s*=0. Then (s)*={0}. If 50, then by regularity there exists a nonzero
idempotent e in (s). Therefore e=e*c(s)*={0} and this is a contradiction. Thus
N has no nonzero nilpotent elements. If ¢¢ N then a=axa for some x€N. Since
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aa is an idempotent, by lemma 1 (iii) it follows that ax=(axa)x=a(xa)x=
=x(xa)x(xa)e Na and hence a=axac Na*. Thus N is strongly regular.
By remark 11 and theorem 12 we have the following

Corollary 13. Suppose N is a regular near-ring in which every nilpotent element
is in the centre. Then N is strongly regular.

We close this article with the following

Example 14. Let N={0, 1, 2, 3, 4}. Define addition as moduolo 5 and multi-
plication as follows:
012
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Then (N, +, +) is a near-ring (see CLAY [1]). Clearly N is a regular near-ring with
no nonzero nilpotent elements. But no nonzero idempotent is in the centre of N.
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