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Simplicial faces in pure and factorial state spaces
of operator algebras
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1. Introduction

It is known by [10] and [1] that for a unital C∗-algebra A, the pure
and factorial state spaces of A (see §2) can be written as a union of w∗-
closed faces of the state space. In this work, we investigate the question
when the pure and factorial state spaces of a C∗-algebra A can be written
as unions of w∗-closed simplicial faces of the quasi-state space Q(A).

The answer in the case of the factorial state space F (A) is easy. In
fact, A is an abelian C∗-algebra if, and only if, F (A) is a union of w∗-
closed simplicial faces of Q(A). By a closed face we shall always mean a
w∗-closed face.

For the pure state space P (A), we prove that the following conditions
are equivalent.

1. P (A) is a union of simplicial faces of Q(A).

2. If ψ1, ψ2 are two distinct equivalent pure states of A, then
(1/2)(ψ1 + ψ2) /∈ P (A)

3. F (A) ∩ P (A) = P (A).

Moreover, we show that if P (A) is a union of simplicial faces of Q(A), A
is postliminal and for all irreducible representations π of A,

π(A)/LC(Hπ),

where LC(Hπ) denotes the compact operators on a Hilbert space Hπ, is
abelian.
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2. Preliminaries

Let A be a C∗-algebra. If S is a subset of the dual space A∗, we
denote by S the closure of S in the w∗-topology. We denote the state
space of A by S(A). S(A) is convex and w∗-compact, if A is unital. Let
P (A) be the set of extreme points of S(A), which we call the pure states of
A. The pure state space of A is P (A). A state of A is said to be factorial
if the von Neumann algebra generated by πφ(A) is a factor, where πφ is
the GNS representation associated with φ. The factor state space of A
is F (A), where F (A) is the set of factorial states. The type I factorial
states will be denoted by FI(A). The quasi-state space of A is the set of
all positive linear functionals on A with norm less than or equal to 1.

Recall that, two pure states φ1, φ2 are said to be equivalent if πφ1 ,
πφ2 are unitarily equivalent. Let F be a w∗-closed face of S(A), where A
is a unital C∗-algebra. Then, F is a Choquet simplex if, and only if, F
does not contain two distinct equivalent pure states of A ([3; Th 2.5] and
[2; cor 3]).

Let A be an arbitrary C∗-algebra. Consider the following condition
which will have a special significance throughout this work: “P (A) is a
union of closed simplicial faces of S(A)”.

Suppose that A is non-unital and let Ã be the C∗-algebra obtained
from A by adjoining an identity. The restriction map r : S(Ã) → Q(A) is
an affine homeomorphism of S(Ã) onto Q(A) which maps P (Ã) onto P (A)
and F (Ã) onto F (A) (see, for example [11]). Since P (Ã) and F (Ã) are
unions of closed faces of S(Ã) [1;10], it follows that P (A) and F (A) are
unions of closed faces of Q(A). Furthermore, P (A) (respectively F (A)) is
a union of closed simplicial faces of Q(A) if, and only if, P (Ã) (respectively
F (Ã)) is a union of closed simplicial faces of S(Ã).

3. Main results

We start this section by the following definition:

Definition 3.1. A C∗-algebra A is a said to satisfy the condition (∗)
if, and only if, whenever ψ1, ψ2 are two distinct equivalent pure states of
A then

(1/2)(ψ1 + ψ2) /∈ P (A).

The following result shows the connection between the above condition
(∗) and simplicial faces of the state space of A.
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Proposition 3.2. Let A a unital C∗-algebra. Then A satisfies (∗) if,

and only if, P (A) is a union of closed simplicial faces of S(A).

Proof. (−→) Let A satisfy (∗). Let φ ∈ P (A) and let Fφ be the
smallest closed face of S(A) which contains φ. Using [10], we have P (A)
is a union of closed faces of S(A) and hence Fφ ⊆ P (A).

Suppose that Fφ is not a Choquet simplex. Then using [3; Th 2.5]
and [2; cor 3] Fφ contains two distinct equivalent pure states of A, ψ1, ψ2

say. Since Fφ is convex, then

ψ = (1/2)(ψ1 + ψ2) ∈ Fφ

and hence ψ ∈ P (A), which contradicts (∗). Thus Fφ is Choquet simplex.
Finally, P (A) is the union of the simplicial faces Fφ (φ ∈ P (A)).

(←−) Suppose (∗) does not hold. Then there exist equivalent pure
states ψ1, ψ2 such that ψ1 6= ψ2 and

(1/2)(ψ1 + ψ2) ∈ P (A)

Let φ = (1/2)(ψ1 + ψ2). Then ψ1, ψ2 ∈ Fφ. If F is a closed face of S(A)
such that φ ∈ F ⊆ P (A) then Fφ ⊆ F , so ψ1, ψ2 ∈ F and F is not a
Choquet simplex (see [3; Th 2.5] and [2; cor 3]). Thus P (A) is not a union
of closed simplicial faces of S(A).

Remark. Note that, when A is unital, P (A) is a union of simplicial
faces of S(A) if, and only if, it is a union of simplicial faces of Q(A).

Proposition 3.3. Let A be a non-unital C∗-algebra. Then the follow-
ing are equivalent.

(i) P (A) is a union of closed simplicial faces of Q(A)
(ii) Ã satisfies (∗).
(iii) A satisfies (∗).
Proof. (i) ←→ (ii)
As observed in section 2, P (A) is a union of closed simplicial faces of

Q(A) if, and only if, P (Ã) is a union of closed simplicial faces of S(Ã),
and the latter condition is equivalent, to Ã satisfying (∗) (see proposition
3.2).

(iii) −→ (ii)
Let φ1 and φ2 be distinct equivalent pure states of Ã. Since the re-

striction map r : S(Ã) −→ Q(A) is (1−1), then r(φ1) 6= r(φ2). Moreover,
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r(φ1) and r(φ2) are both in P (A), since φ1 and φ2 are distinct and equiv-
alent. It is routine to check that r(φ1) and r(φ2) are equivalent (see, for
example [11]). Hence by assumption,

(1/2)
(
r(φ1) + r(φ2)

)
/∈ P (A)

(1/2)(φ1 + φ2) /∈ r−1(P (A)) = P (Ã)

(ii) −→ (iii)
Suppose Ã satisfies (∗) and let ψ1 and ψ2 be distinct equivalent pure

states of A. We show that

(1/2)(ψ1 + ψ2) /∈ P (A)

Let ψ̃i be the unique pure state extension of ψi to Ã (i = 1, 2). Then ψ̃1

and ψ̃2 are distinct and equivalent. By assumption, we have

(1/2)(ψ̃1 + ψ̃2) /∈ P (Ã).

Since r is (1−1), then

r
(
(1/2)(ψ̃1 + ψ̃2)

)
/∈ r(P (Ã)) = P (A)

and thus we get (iii).

Remark. Combining proposition 3.3 with the remark after proposition
3.2, we see that, for any C∗-algebra A, A satisfies (∗) if, and only if, P (A)
is a union of simplicial faces of Q(A).

The next results illustrates the relation between commutativity and
closed simplicial faces.

Proposition 3.4. Let A be an arbitrary C∗-algebra. Suppose that
P (A) can be written as a union of closed simplicial faces of Q(A). Then

(i) A is of type I.
(ii) For all irreducible representations π of A on a Hilbert space Hπ,

π(A) ⊇ LC(Hπ) and π(A)/LC(Hπ) is abelian.

Proof. Let π be an irreducible representation of A on a Hilbert space
Hπ. For (i), it is enough to prove that

π(A) ⊇ LC(Hπ) (see [9]).

It is known by [5; 4.1.10] that either

π(A) ⊇ LC(Hπ) or π(A) ∩ LC(Hπ) = (0)
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Suppose that π(A)∩LC(Hπ) = (0), then π is not one dimensional and so
there exist distinct equivalent pure states ψ1 and ψ2 of π(A). Therefore,
ψ1 ◦ π and ψ2 ◦ π are distinct equivalent pure states of A. Then

S(π(A)) = S(π(A)/π(A) ∩ LC(Hπ)) ⊆ V S(π(A))

(See Glimm’s results in [7]), where V S(π(A)) denotes the set of vector
states of π(A). So

(1/2)(ψ1 + ψ2) ∈ V S(π(A)) = P (π(A)) ([7, Th 2])

and
(1/2)(ψ1 + ψ2) ◦ π = (1/2)(ψ1 ◦ π + ψ2 ◦ π) ∈ P (A),

which contradicts the fact that A satisfies (∗). Thus

π(A) ⊇ LC(Hπ).

Now, we prove that π(A)/LC(Hπ) is abelian, for all irreducible rep-
resentations π of A. Assume the contrary, then there exists some π with
π(A)/LC(Hπ) not abelian. Hence, there exist distinct equivalent pure
states ψ1 and ψ2 of π(A)/LC(Hπ). Then ψ1 ◦ π and ψ2 ◦ π are distinct
equivalent pure states of A. Now by [8, lemma 9].

(1/2)(ψ1 + ψ2) ∈ S(π(A)/LC(Hπ) ⊆ P (π(A))

Hence
(1/2)(ψ1 + ψ2) ◦ π ∈ P (A).

This contadicts the fact that A satisfies (∗).
Next, we are going to find another condition equivalent to P (A) being

a union of closed simplicial faces.

Proposition 3.5. Let A be a C∗-algebra. The following conditions
are equivalent:

(i) F (A) ∩ P (A) = P (A) that is, P (A) is relatively closed in F (A)
(ii) A satisfies (∗).
Proof. (i) −→ (ii) Suppose that condition (∗) does not hold for A.

Therefore, there exist two distinct equivalent pure states of A, ψ1, ψ2 say,
such that (1/2)(ψ1 + ψ2) ∈ P (A). Furthermore, using [4; 2.1 (ii)], we get

(1/2)(ψ1 + ψ2) ∈ F (A)

Finally, since (1/2)(ψ1 + ψ2) is not pure, we get a contradiction.
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(ii) −→ (i) Let φ be in F (A) ∩ P (A). By proposition 3.4, A is neces-
sarily of type I. Then φ ∈ FI(A)∩P (A), (where FI(A) denotes the set of
factorial states of type I). Note that, by [4, §2], we have

φ =
∞∑

i=1

λiφi where λi > 0,

∞∑

i=1

λi = 1

and {φi} are equivalent pure states of A. On the other hand, since φ ∈
P (A), these exists a closed simplicial face F of Q(A) which lies in P (A)
and contains φ.

We prove that φ is pure. Suppose not, then without loss of generality,
we can assume that φ1 6= φ2. To reach a contradiction, it is sufficient
to show that φ1, φ2 ∈ F (see [3, Th. 2.5] and [2., cor 3]). Note that
φ = λ1φ1 + ψ where ψ is the rest of the infinite sum. By considering an
(approximate) identity for A we obtain that

‖ψ‖ = 1− λ1

Consider
ψ◦ =

1
1− λ1

ψ ∈ S(A).

So φ = λ1φ1 + (1 − λ1)ψ◦, which implies that φ1 ∈ F . Similarly, we can
prove that φ2 is in F . This contradicts the fact that F is simplicial and
so φ must be pure.

We end this section by summarizing the above results in the following
theorem.

Theorem 3.6. Let A be an arbitrary C∗-algebra. Then the following
are equivalent:

(i) P (A) a union of closed simplicial faces of Q(A).
(ii) whenever ψ1 and ψ2 are distinct equivalent pure states of A, then

(1/2)(ψ1 + ψ2) /∈ P (A)

(iii) P (A) ∩ F (A) = P (A).

4. Examples and related results

In this section, we consider some examples of type I C∗-algebras with
and without property (∗).

Let A be a C∗-algebra. A point π0 ∈ Â is said to be singular [8,
p160], if there is an E ∈ A with π(E) a projection for all π in some
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neighbourhood N of π0, with π0(E) one dimensional, and such that for
each neighbourhood M of π0 contained in N , there exists π in M so that
dim π(E) > 1. If π0 is not singular π0 is called regular.

Let D be the C∗-algebra of all bounded sequences x = (xn)n≥1 of
2× 2 complex matrices with coordinatewise operations and

‖x‖ = sup
n
‖xn‖

Let A be the C∗-subalgebra of D consisting of all x = (xn) such that
xn converges in norm to a matrix of the form

(
λ(x) 0

0 λ(x)

)
, as n →∞.

By [6, Th 1.1. and following], Â is homeomorphic to N ∪ {∞}, each
n ∈ N corresponding to a 2-dimensional representation πn where πn(x) =
xn and ∞ to the 1-dimensional representation πλ given by πλ(x) = λ(x).
Define E ∈ A such that

E = (En) and En =
(

1 0
0 1

)
for all n.

That is, E is the identity of A. Notice that

πλ(E) = 1 and πn(E) = En

is a projection of dimension 2, so that πλ is singular. On the other hand,

πλ(A) = {λ(a) : a ∈ A}
is 1-dimensional. Now applying [8,Th 5], we have

P (A) = P (A) =
⋃

φ∈P (A)

{φ}

and so we can see directly that A satisfies (∗) and that P (A) is a union of
closed simplicial faces of S(A) (in a trivial way).

We show next how tensoring with M2(C) can destroy property (∗).
Let C be the C∗-algebra of all sequences x = (xn)n≥1 of 4×4 matrices

for which sup
n
‖xn‖ is finite, with coordinatewise operations and

‖x‖ = sup
n
‖xn‖
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Let B be the C∗-subalgebra of C consisting of all x = (xn) such that
xn converges in norm to a matrix of the form




a(x) b(x) 0 0
c(x) d(x) 0 0
0 0 a(x) b(x)
0 0 c(x) d(x)


 as, n →∞

for some complex numbers a(x), b(x), c(x) and d(x). We write

M(x) =
(

a(x) b(x)
c(x) d(x)

)
.

B̂ is homeomorphic to N ∪ {∞}, each n ∈ N corresponding to a
4-dimensional representation πn given by πn(x) = xn and ∞ to the 2-
dimensional representation πM given by πM (x) = M(x). In this example,
we show that P (B) cannot be written as a union of closed simplicial faces
of S(B). Consider

e1, e2 ∈ C2 and ξ1, ξ4 ∈ C4

where

e1 =
(

1
0

)
, e2 =

(
0
1

)
, ξ1 =




1
0
0
0


 and ξ4 =




0
0
0
1


 .

Since ξ1 and ξ4 are orthogonal unit vectors in C4, then they are linearly
independent. Finally, using the definition of B, we can prove that.

(1/2)(we1 ◦ πM + we2 ◦ πM ) = w∗ − limw ξ1+ξ4√
2
◦ πn

where
wei(A) = 〈Aei, ei〉 for all A ∈ M2(C), i = 1, 2 .

Thus, there exist two distinct equivalent pure states of B, φ1 = we1 ◦ πM ,
φ2 = we2 ◦ πM such that

(1/2)(φ1 + φ2) ∈ P (B).

So (∗) fails in this example and by proposition 3.2, P (B) is not a union of
closed simplicial faces of S(B).

We note that in [11. proposition 3.3.5], P (B) is explicitly determined:

P (B) = {wξ ◦ πn : n = 1, 2, . . . and ξ is a unit vector in C4}
∪ {ψ ◦ πM : ψ is any state of M2(C)}
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It is also shown in [11, Proposition 3.3.11] that if a C∗-algebra C is defined
by changing the definition of B to allow the limit matrix to be

(
M(x) 0

0 N(x)

)

where M(x), N(x) ∈ M2(C), then

P (C) ={wξ ◦ πn : n = 1, 2, . . . and ξ is a unit vector in C4}
∪{a(wξ ◦ πM ) + (1− α)(wη ◦ πN ) : 0 ≤ α ≤ 1 and ξ, η are

unit vectors in C2}

and hence P (C) is a union of simplicial faces of S(A) (singletons and line
segments).

Finally, we note that if A is a C∗-algebra such that LC(Hπ) ⊆ A ⊆
L(Hπ) and A/LC(Hπ) is abelian then

P (A) = ∪{Fξ : ξ is a unit vector in Hπ}
where

Fξ = {αwξ + (1− α)g : 0 ≤ α ≤ 1, g ∈ S(A)/LC(Hπ)}
a simplicial closed face of S(A) [11, §3]. In this connection, see proposition
3.4 (ii).

5. Simplicial faces in factorial state spaces of a C∗-algebra

In this section, we find a necessary and sufficient condition for the
factorial state space of a C∗-algebra A to be a union of closed simplicial
faces.

Let F (A) be the set of all φ in S(A) such that πφ(A)′ is a factor.
We define the factorial state space of A as the w∗-closed of F (A) and we
denote it by F (A).

Proposition 5.1. Let A be a unital C∗-algebra. Then A is abelian if,
and only if, F (A) is a union of closed simplicial faces of S(A).

Proof. (−→) if A is abelian, then

F (A) = P (A) = P (A).

Hence F (A) =
⋃

φ∈P (A)

{φ}, a union of closed simplicial faces of S(A).
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(←−) Suppose A is not abelian. Then there exists an irreducible
representation π with dim Hπ > 1. Choose ξ1, ξ2 ∈ Hπ so that they are
linearly independent unit vectors. Let

ψ1(a) = 〈π(a)ξ1, ξ2〉 and

ψ2(a) = 〈π(a)ξ2, ξ2〉 for all a ∈ A.

It is easy to check that ψ1, ψ2 are distinct equivalent pure states of
A. Let φ = (1/2)(ψ1 + ψ2). By [4, Th 2.1], we get

φ ∈ FI(A) (⊆ F (A))

Finally, φ does not belong to any closed simplicial faces of S(A). For,
suppose F is a face of S(A) such that φ ∈ F . Therefore, ψ1, ψ2 ∈ F and
F is not a simplex.

In the non-unital case, consider the restriction map r given by r :
S(Ã) −→ Q(A), where Ã is the C∗-algebra obtained from A by the ad-
joining of an identity. Now since

r(F (Ã)) = F (A) ∪ {0}
and

0 ∈ P (A) ⊂ F (A), [5; 2.12.13], we obtain

r(F (Ã)) = F (A).

Proposition 5.2. Let A be a non-unital C∗-algebra. Then the follow-
ing are equivalent:

(i) A is abelian

(ii) F (A) is a union of closed simplicial faces of Q(A)

Proof. It is clear that A is abelian if, and only if, Ã is abelian.
Moreover, since r is an affine homeomorphism, F (A) is a union of closed
simplicial faces of Q(A) if, and only if, F (Ã) is a union of closed simplicial
faces of S(Ã). The result then follows from proposition 5.1.
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