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On the cotangent bundle of a differentiable manifold

By V. OPROIU (Iaşi) and N. PAPAGHIUC (Iaşi)

Abstract. We study some geometric properties of the cotangent bundle T ∗M of a
differentiable manifold M , endowed with an arbitrary asymmetric nonlinear connection.
It is obtained a pseudo-Riemannian metric G on T ∗M , of Riemann extension type, for
which we study the conditions under which it is either flat, or projectively flat, or
conformally flat or locally symmetric. Further, by using an almost complex structure J
or an almost product structure P on T ∗M , defined by the same nonlinear connection
and an M -tensor field on T ∗M , we obtain some results concerning the property of
(T ∗M, J, G) (of (T ∗M, P, G)) to be a Kaehler manifold with Norden metric (to be a
para-Kaehler manifold).

Introduction

In [5] (see also [6], [7], [8]) the present authors have studied the prop-
erties of a pseudo-Riemannian metric G on the cotangent bundle T ∗M
of a manifold M by using a symmetric nonlinear connection on this bun-
dle. The pseudo-Riemannian metric G on T ∗M is very much similar to
Riemann extension considered in [10], [11].

The purpose of the present paper is to study some properties of a
similar pseudo-Riemannian metric G on the cotangent bundle T ∗M by
using an arbitrary nonlinear connection on this bundle. We get that the
considered pseudo-Riemannian metric G on T ∗M is determined only by
the symmetric part of the considered nonlinear connection on T ∗M and
we show that the geometric properties of pseudo-Riemannian manifold
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(T ∗M,G) which depend only on the pseudo-Riemannian metric G and on

the Levi Civita connection
∼
∇ of G depend also only on the symmetric part

of the considered nonlinear connection on T ∗M . Hence, for the study of
such geometric properties of (T ∗M, G) we can assume from the beginning
that the considered nonlinear connection on T ∗M is symmetric. Then, we
consider some additional structures on T ∗M and we shall see that their
properties do not depend only on metric G and its Levi Civita connec-

tion
∼
∇ but also on the skew-symmetric part of the considered nonlinear

connection. So, we can define an almost complex structure J and an al-
most product structure P on T ∗M and we then get the conditions under
which (T ∗M, J,G) is a Kaehlerian manifold with Norden metric (see [2],
[7]) and the conditions under which (T ∗M, P, G) is a parakaehlerian mani-
fold (see [1], [8]). Some classes of manifolds whose cotangent bundles carry
parakaehlerian structures are also presented (Theorems 9, 12, 14, 16, 18).
Remark that the assumption that the considered nonlinear connection on
T ∗M is not necessarily symmetric it is essential in order to obtain these
classes of manifolds.

The manifolds, tensor fields and geometric objects we consider in this
paper, are assumed to be differentiable of class C∞. We use the well known
summation convention, the range for the indices i, j, k, h, l, s, t being always
{1, 2, . . . , n}. We shall denote by Γ(T ∗M) the module of smooth vector
fields on T ∗M .

1. The pseudo-Riemannian manifold (T ∗M, G)

Let M be an n-dimensional smooth manifold and denote by π :
T ∗M → M its cotangent bundle with fibres the cotangent spaces to M .
Then T ∗M is a 2n-dimensional smooth manifold and some local charts in-
duced naturally from local charts on M , may be used. Namely,
if (U, xi); i = 1, . . . , n is a local chart on M , then the local chart
(π−1(U), qi, pi); i = 1, . . . , n is defined on T ∗M , where qi = xi ◦ π; i =
1, . . . , n, i.e. the first n local coordinates of a cotangent vector from π−1(U)
are the local coordinates of its base point, thought of as functions on
π−1(U) ⊂ T ∗(M) and pi; i = 1, . . . , n are the vector space coordinates
with respect to the natural frame (dx1, . . . , dxn) in T ∗M defined by the
local chart (U, xi); i = 1, . . . , n. The M -tensor fields and the linear M -
connections may be considered on T ∗M and the usual tensor fields and
linear connections on the base manifold M may be thought of naturally
as M -tensor fields and linear M -connections on T ∗M (see [10], [5]). Let
V T ∗M = Ker π∗ ⊂ TT ∗M be the vertical distribution over T ∗M. Then
V T ∗M is involutive with fibre dimension n and the local vector fields
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(∂i = ∂
∂pi

); i = 1, . . . , n define a local frame in V T ∗M. A nonlinear con-
nection on T ∗M is defined by a complementary distribution HT ∗M (called
the horizontal distribution) to V T ∗M in TT ∗M . A local frame in HT ∗M ,
related to the induced local chart (π−1(U), qi, pi) is defined by the local
vector fields (δi = δ

δqi ); i = 1, . . . , n, where:

δi =
δ

δqi
=

∂

∂qi
−Nij

∂

∂pj
.

The functions Nij = Nij(q, p); i, j = 1, . . . , n, are the connection coef-
ficients of the considered nonlinear connection in the induced local chart
(π−1(U), qi, pi); i = 1, . . . , n, and we assume that this nonlinear connection
is not necessarily symmetric. Then we have

(1) TT ∗M = V T ∗M ⊕HT ∗M

and (∂i, δi); i = 1, . . . , n, is a local frame in T ∗M adapted to the direct sum
decomposition (1). The system of local 1-forms (δpi, dqi); i = 1, . . . , n,
where

δpi = dpi + Njidqj

is the dual local frame of the local frame (∂i, δi); i = 1, . . . , n. Then:
[

∂

∂pi
,

δ

δqj

]
= Φi

jk

∂

∂pk
;

[
δ

δqi
,

δ

δqj

]
= −Rkij

∂

∂pk
(2)

where

Φi
jk = −∂Njk

∂pi
; Rkij =

δNjk

δqi
− δNik

δqj
(3)

and the integrability of the differential system on T ∗M defined by HT ∗M
is equivalent to the vanishing of the components Rkij on π−1(U).

Remark that the components Φk
ij define a linear M -connection while

the components Rkij define an M -tensor field of type (0,3) on T ∗M .
Consider the following pseudo-Riemannian metric G on T ∗M of Rie-

mann extension type

(4) G = 2δpidqi = 2dpidqi + (Nji + Nij)dqjdqi

where δpi is defined by an arbitrary nonlinear connection Nij on T ∗M .
Remark that the pseudo-Riemannian metric G depends only on the sym-
metric part of the considered nonlinear connection on T ∗M , the distribu-
tions V T ∗M and HT ∗M on T ∗M are both isotropic with respect to G
and the signature of G is (n, n).



320 V. Oproiu and N. Papaghiuc

Denote by
∼
∇ the Levi Civita connection of the considered pseudo-

Riemannian metric G on T ∗M .
Then the following result is proved by a straightforward computation.

Proposition 1. The local coordinate expression of
∼
∇ in the local

frame (∂i, δi) adapted to the direct sum decomposition (1) is:

∼
∇∂i∂j = 0;

∼
∇δi∂

j = −1
2
(Φj

ik + Φj
ki)∂

k;
∼
∇∂iδj =

1
2
(Φi

jk − Φi
kj)∂

k;

∼
∇δi

δj =
1
2
(Φk

ij + Φk
ji)δk +

1
2
(Rijk −Rjki −Rkij)∂k

where Φi
jk and Rkij are given by (3).

Remark. From Proposition 1 it follows that the essential coefficients of

the local coordinate expression of
∼
∇ in the local adapted frame (∂i, δi); i =

1, . . . , n are only the symmetric part and the skew-symmetric part of the
linear M -connection defined by Φi

jk on T ∗M and the M -tensor field on
T ∗M defined by 1

2 (Rijk−Rjki−Rkij). On the other hand, taking into ac-
count that the pseudo-Riemannian metric G depends only on the symmet-
ric part of the considered nonlinear connection defined by the coefficients
Nij on T ∗M we can consider the symmetric nonlinear connection defined
by the connection coefficients N ij on T ∗M determined by the symmetric
part of the coefficients Nij , i.e. N ij = 1

2 (Nij + Nji). We obtain another
horizontal distribution HT ∗M defined by the coefficients N ij and the local
vector fields (δi = δ

δqi ); i = 1, . . . , n, where

δi =
δ

δqi
=

∂

∂qi
−N ij

∂

∂pj

define a local frame in HT ∗M . Then (∂i, δi); i = 1, . . . , n is a local frame
in T ∗M adapted to the direct sum decomposition:

(5) TT ∗M = V T ∗M ⊕HT ∗M.

Denote by (δpi, dqi); i = 1, . . . , n the local dual frame of the local
frame (∂i, δi); i = 1, . . . , n. Then we have

δpi = dpi + N ijdqj

and the pseudo-Riemannian metric G defined by (4) on T ∗M becomes

G = 2δpidqi = 2(dpi + N ijdqj)dqi.
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If we denote by Tij the components defined by the skew-symmetric part
of the componets Nij , i.e. Tij = 1

2 (Nij − Nji), then the components Tij

define an M -tensor field on T ∗M and we have

δi = δi − Tij∂
j

and from Proposition 1 we get by a straightforward computation

Proposition 2. The local coordinate expression of the Levi Civita

connection
∼
∇ of G in the local frame (∂i, δi); i = 1, . . . , n adapted to the

direct sum decomposition (5) is:

∼
∇∂i∂j = 0;

∼
∇δi

∂j = −Φ
j

ik∂k;
∼
∇∂iδj = 0;

∼
∇δi

δj = Φ
k

ijδk + Rijk∂k

where the coefficients Φ
k

ij and Rijk are given by

(6) Φ
k

ij = −∂kN ij ; Rkij = δiN jk − δjN ik.

Remark. The result from Proposition 2 is well known from [5], [6] for
the case where the considered nonlinear connection on T ∗M is symmetric.
Also, from Proposition 2 it follows that the essential coefficients of the local

coordinate expression of
∼
∇ in the local adapted frame (∂i, δi); i = 1, . . . , n

are only Φ
k

ij and Rkij given by (6) and they are expressed by using only
the symmetric part of the arbitrary nonlinear connection defined by the
coefficients Nij .

Since the geometric properties of (T ∗M, G) which depend only on the

metric G and its Levi Civita connection
∼
∇ are independent of the choice

of either the horizontal distribution HT ∗M or HT ∗M on T ∗M , we have,
from Proposition 2:

Theorem 3. The geometric properties of the pseudo-Riemannian
manifold (T ∗M, G) to be either flat, or projectively flat, or conformally
flat or locally symmetric which depend only on the metric G and its Levi

Civita connection
∼
∇ are expressed only in the terms of the symmetric part

of the considered nonlinear connection on T ∗M . Hence, in order to study
such geometric properties of (T ∗M,G) we can assume from the begining
that the considered nonlinear connection on T ∗M is symmetric.

The above properties of (T ∗M,G) have been studied by the present
authors in [5], [6], assuming that the considered nonlinear connexion on
T ∗M is symmetric.
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2. An almost complex structure on (T ∗M, G)

In this section we consider an arbitrary nonlinear connection on T ∗M
and study an additional structure naturally defined on T ∗M .

We may define an almost complex structure J on T ∗M and study
the conditions under which the pseudo-Riemannian metric G given by (4)
is a Norden metric for the defined almost complex structure J . Next we
get necessary and sufficient conditions for (T ∗M, J,G) to be a Kaehlerian
manifold with Norden metric (see [2], [7]).

Assume that the components gjk; j, k = 1, . . . , n, define a nondegen-
erate M -tensor field of type (0, 2) on T ∗M . Denote by gjk; j, k = 1, . . . , n,
the components of its inverse matrix, i.e.

(7) gihgkh = ghig
hk = δk

i .

Then the components gjk; j, k = 1, . . . , n, define an M -tensor field of type
(2, 0) on T ∗M . Define the automorphism J of TT ∗M expressed in local
frame adapted to the direct sum decomposition (1) by

(8) J(
δ

δqi
) = gji

∂

∂pj
; J(

∂

∂pi
) = −gij δ

δqj
.

It follows by a straightforward computation that J defines an almost com-
plex structure on T ∗M (see also [7]). We have

Proposition 4. The pseudo-Riemannian metric G defined by (4) is a
Norden metric for the almost complex structure J defined by (8) if and
only if the M -tensor field gjk is symmetric, i.e. gjk = gkj .

Proof. It follows easily by direct verification for the local vector
fields δi, ∂i that G(JX, JY ) = −G(X, Y );∀X, Y ∈ Γ(T ∗M), if and only if
gjk = gkj .

In the following assume that gij is a nondegenerate symmetric M -
tensor field on T ∗M and denote by (T ∗M, J,G) the almost complex man-
ifold T ∗M with the almost complex structure J defined by (8) and with
Norden metric G given by (4). According to the terminology from [2],
we have that (T ∗M, J,G) is a Kaehlerian manifold with Norden metric if
∼
∇J = 0, or equivalently, the tensor field F of type (0, 3) defined by

(9) F (X,Y, Z) = G((
∼
∇XJ)Y,Z); X,Y, Z ∈ Γ(T ∗M)

vanishes identically on T ∗M .

By using (8), (9) and Proposition 1 we get by a straightforward com-
putation
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Proposition 5. The local coordinate expression of F in the local frame
adapted to the direct sum decomposition (1) is:

F

(
∂

∂pi
,

∂

∂pj
,

∂

∂pk

)
= −∂gjk

∂pi
;

F

(
∂

∂pi
,

∂

∂pj
,

δ

δqk

)
= F

(
∂

∂pi
,

δ

δqk
,

∂

∂pj

)
=

1
2
gjh(Φi

kh − Φi
hk);

F

(
∂

∂pi
,

δ

δqj
,

δ

δqk

)
=

∂gjk

∂pi
;

F

(
δ

δqi
,

∂

∂pj
,

∂

∂pk

)
= −δgjk

δqi
− 1

2
gjh(Φk

ih + Φk
hi)−

1
2
gkh(Φj

ih + Φj
hi);

F

(
δ

δqi
,

∂

∂pj
,

δ

δqk

)
= F

(
δ

δqi
,

δ

δqk
,

∂

∂pj

)
= −1

2
gjh(Rihk −Rhki −Rkih);

F

(
δ

δqi
,

δ

δqj
,

δ

δqk

)
=

δgjk

δqi
− 1

2
gjh(Φh

ik + Φh
ki)−

1
2
gkh(Φh

ij + Φh
ji).

Examining these relations it follows that the condition F = 0 which
must be fulfilled for (T ∗M, J,G) to be a Kaehlerian manifold with Norden
metric is reduced to:

(10)
(i)

∂gjk

∂pi
= 0; (ii) Φk

ij = Φk
ji; (iii) Rkij −Rijk −Rjki = 0;

(iv)
δgjk

δqi
− 1

2
gjh(Φh

ik + Φh
ki)−

1
2
gkh(Φh

ij + Φh
ji) = 0.

From (10) (i) it follows that the componets gij are independent of pk.
Thus the M -tensor field defined by gij is obtained from a tensor field on
the base manifold, defining a (pseudo-) Riemannian metric on M . From
(10) (ii) it follows that the linear M -connection defined by Φk

ij on T ∗M is
symmetric, such that the condition (10) (iv) becomes:

(11)
∂gjk

∂qi
− Φh

ijghk − Φh
ikgjh = 0.

From (11) it follows that the symmetric linear M -connection defined by
Φk

ij on T ∗M is in fact the Levi Civita connection ∇ of gij , thought of as
a linear M -connection on T ∗M . Thus, from (11) and the first relation (3)
we have

(12) (i) Φk
ij =

{
k
ij

}
; (ii) Nij = −pk

{
k
ij

}
+ aij
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where {k
ij} are the Christoffel symbols defined by gij and the components

aij ; i, j = 1, . . . , n, define an arbitrary tensor field of type (0, 2) on the
base manifold M thought of as an M -tensor field on T ∗M . Using (12) (ii)
in the second relation (3), we get by a straightforward computation

(13) Rkij = −phRh
kij +∇iajk −∇jaik

where Rh
kij denotes the local coordinate components of the curvature ten-

sor R of the Levi Civita connection ∇ of gij on M and ∇iajk are the local
components of the covariant derivative of the tensor field on M defined by
ajk with respect to ∇. Then, using (13) and the first Bianchi identity for
the curvature tensor Rh

kij on M , the condition (10) (iii) is reduced to:

(14) −phRh
kij +∇icjk −∇jcik −∇kbij = 0

where cij and bij denote respectively the symmetric part and the skew-
symmetric part of the arbitrary tensor field aij , i.e.

cij =
1
2
(aij + aji); bij =

1
2
(aij − aji).

From (14) it follows that Rh
kij = 0, i.e. the Levi Civita connection

∇ of gij is flat and the components cjk and bjk defined respectively as
the symmetric part and the skew-symmetric part of ajk must satisfy the
condition

(15) ∇icjk −∇jcik = ∇kbij .

Hence we may state

Theorem 6. The almost complex manifold with Norden metric
(T ∗M,J,G) is Kaehlerian with Norden metric if and only if J and G
are defined by a flat (pseudo-) Riemannian structure on the base manifold
M and a nonlinear connection given by (12) (ii) where aij is a tensor field
on M which satisfies condition (15), cij and bij denoting respectively the
symmetric and the skew-symmetric part of aij .

Remarks. (i) The condition (15) implies that the 2-form with the
components bij defined as the skew-symmetric part of aij is closed. Then
if the 2-form with the components bij is closed the condition (15) is equiva-
lent to ∇iajk−∇jaik = 0. Thus, Theorem 6 becomes: The almost complex
manifold with Norden metric (T ∗M, J,G) is Kaehlerian with Norden met-
ric if and only if J and G are defined by a (pseudo-) Riemannian structure
on the base manifold M and a nonlinear connection given by (12) (ii),
such that the horizontal distribution HT ∗M is involutive and the 2-form
defined by bij is closed.
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(ii) In the case bij = 0 (i.e. the considered nonlinear connection de-
fined by Nij on T ∗M is symmetric) we get the results obtained in [7].

(iii) If we assume that cij define a Codazzi tensor field with respect to
the connection ∇ on M , i.e. ∇icjk = ∇jcik and the 2-form defined by bij

is parallel with respect to ∇, then the condition (15) is identically verified.
It is known that the n-dimensional torus Tn has a flat Riemannian metric,
hence every Codazzi tensor field on Tn and every parallel 2-form on Tn

define a Kaehlerian structure with Norden metric on T ∗Tn.

3. An almost product structure on (T ∗M, G)

Consider the following almost product structure P on T ∗M naturally
defined by the direct sum decomposition (1), i.e.

(16) P

(
∂

∂pi

)
=

∂

∂pi
; P

(
δ

δqi

)
= − δ

δqi
.

It follows easily that G(PX, PY ) = −G(X,Y ); ∀X,Y ∈ Γ(T ∗M), there-
fore (T ∗M,G, P ) is an almost parahermitian manifold (see [1], [8]). Define
the 2-form Ω associated with the almost parahermitian structure (G,P )
on T ∗M by

(17) Ω(X, Y ) = G(PX, Y ); X,Y ∈ Γ(T ∗M).

According to the terminology from [1] (see also [8]) we have that

(T ∗M,G, P ) is a parakaehlerian manifold if
∼
∇Ω vanishes identically on

T ∗M . Using Proposition 1 we obtain by a straightforward computation

(
∼
∇∂iΩ)(∂j , ∂k) = (

∼
∇∂iΩ)(∂j , δk) = (

∼
∇δiΩ)(∂j , ∂k) = (

∼
∇δiΩ)(∂j , δk) = 0;

(
∼
∇∂iΩ)(δj , δk) = Φi

kj − Φi
jk;(18)

(
∼
∇δiΩ)(δj , δk) = Rkij + Rjki −Rijk.

Then the condition
∼
∇Ω = 0 which must be fulfilled for (T ∗M, G, P ) to be

a parakaehlerian manifold is reduced to:

(19) (i) Φi
jk = Φi

kj ; (ii) Rijk = Rjki + Rkij .

From (19) (i) it follows that the linear M -connection defined by Φk
ij on

T ∗M is symmetric. Hence we have
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Proposition 7. The almost parahermitian manifold (T ∗M,G, P ) is
a parakaehlerian manifold if and only if the linear M -connection Φk

ij and
the M -tensor field Rkij defined by the considered nonlinear connection Nij

satisfy the conditions (19).

In order to obtain some classes of manifolds whose cotangent bun-
dles carry parakaehlerian structures, we write the components Nij of the
considered nonlinear connection on T ∗M in the form:

(20) Nij =
0

N ij + bij

where
0

N ij are the components of a symmetric nonlinear connection on

T ∗M , i.e.
0

N ij =
0

N ji and bij are the components of a skew-symmetric
M -tensor field of type (0,2) on T ∗M , i.e. bij = −bji. The decomposition
(20) is always possible. The condition (19) (i) shows that

∂bij

∂pk
= 0

i.e. bij are the components of a tensor field on the base manifold M ,
thought of as an M -tensor field on T ∗M . Considering Nij of the form
(20) where bij are independent of the cotangential coordinates pk we have

Φk
ij = −∂kNij = −∂k

0

N ij

and we get by a straightforward computation

(21) Rkij =
0

Rkij +∇ibjk −∇jbik

where
0

Rkij and ∇ibjk are defined by:

0

Rkij =
0

δi

0

N jk −
0

δj

0

N ik(22)

∇ibjk =
∂bjk

∂qi
− Φh

ijbhk − Φh
ikbjh(23)

and where
0

δi is given by

0

δi =
∂

∂qi
−

0

N ih
∂

∂ph
.
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Since we have
∑

(ijk)

0

Rkij = 0 it follows that the condition (19) (ii) is ex-

pressed simply by:

(24)
0

Rijk = ∇ibjk

where
∑

(ijk)

denotes the sum consisting of three terms obtained by cyclic

permutations of i, j, k. Then we have
∑

(ijk)

∇ibjk =
∑

(ijk)

∂ibjk = 0

which shows that the 2-form defined by the coefficients bij is closed. Then,
by using (21) it follows that (24) is equivalent to

(25) Rkij = ∇kbij +∇ibjk −∇jbik = 0.

Hence we may state

Theorem 8. The almost parahermitian manifold (T ∗M, G, P ) is
parakaehlerian if and only if the nonlinear connection defined by Nij is
flat and the linear M -connection defined by Φi

jk = −∂iNjk is symmetric.

In the following we shall consider some particular nonlinear connec-
tions of the form (20) where the components bij are independent of pk and
the linear M -connection defined by Φi

jk = −∂iNjk is symmetric and we
shall study the conditions under which (T ∗M, G, P ) is a parakaehlerian
manifold.

First, let M be a manifold with a torsion-free linear connection D
and denote by Γk

ij the connection coefficients of D. Consider the nonlinear
connection defined by the components Nij on T ∗M given by

(26) Nij = −Γk
ijpk + cij + bij

where the components cij (respectively bij) define a symmetric (respec-
tively a skew-symmetric) tensor field of type (0,2) on the base manifold M
thought of as a symmetric (respectively skew-symmetric) M -tensor field
on T ∗M . The considered components Nij are of the form (20), where bij

are independent of pk and
0

N ij are given by

0

N ij = −pkΓk
ij + cij .

Then, by using (22) the condition (24) (or equivalently (25)) becomes

(27) −phRh
kij + Dicjk −Djcik −Dkbij = 0
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where Rh
kij denotes the local coordinate components of the curvature ten-

sor of D on M . Hence we may state

Theorem 9. Let D be a torsion-free linear connection on M and con-
sider on T ∗M the nonlinear connection defined by (26), where Γk

ij are the
connection coefficients of D and cij (respectively bij) are the components
of a symmetric (respectively skew-symmetric) tensor field on M . Then
(T ∗M,G, P ) is a parakaehlerian manifold if and only if D is flat and the
components cij and bij satisfy the condition

(28) Dicjk −Djcik −Dkbij = 0.

Remark. If cij define a Codazzi tensor field with respect to D; i.e.
Dicjk = Djcik and the 2-form bij is parallel with respect to D, i.e. Dkbij =
0, then the condition (28) is identically verified.

By taking into account of Theorems 3 and 9 from this paper and of
Theorem 9 from [5], by using the Ricci identity we obtain

Corollary 10. Let D be a torsion-free linear connection on M and
consider on T ∗M the nonlinear connection defined by (26). Let (T ∗M, G, P)
be the almost parahermitian manifold with G defined by (4) and P defined
by (16). Then if (T ∗M,G, P ) is a parakaehlerian manifold we have that
the pseudo-Riemannian manifold (T ∗M,G) is locally symmetric.

Remark that, in general, the converse of the above assertion is not
true. More precisely, by using Theorems 3 and 9 from this paper and
Theorem 3 in [5] we have

Corollary 11. In the same hypothessis as in Corollary 10, we have
that (T ∗M,G, P ) is a parakaehlerian manifold if and only if the pseudo-
Riemannian manifold (T ∗M, G) is flat and the components cij and bij

satisfy the condition (28).

Now, let M be a manifold with a torsion-free linear connection D hav-
ing the connection coefficients Γk

ij and consider the nonlinear connection
defined by the components Nij on T ∗M given by

(29) Nij = −Γk
ijpk + kpipj + cij + bij

where the components cij (respectively bij) define a symmetric (respec-
tively skew-symmetric) tensor field on M thought of as a symmetric (re-
spectively skew-symmetric) M -tensor field on T ∗M and k is a nonzero
constant. The components Nij given by (29) are of the form (20) where
0

N ij are given by
0

N ij = −pkΓk
ij + kpipj + cij
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and the components bij are independent of pk. Using (22), (23) we get
by a straightforward computation that the condition (24) (or equivalently
(25)) becomes

(30)
−(Rh

kij + k(aikδh
j − ajkδh

i + aijδ
h
k − ajiδ

h
k ))ph

+Dicjk −Djcik −Dkbij = 0

where Rh
kij are the local coordinate components of the curvature tensor of

D on M and the components aij are defined by

aij = cij + bij .

Then the condition (30) is equivalent to the following two relations:

(31)
(i) Rh

kij = k(ajkδh
i − aikδh

j − aijδ
h
k + ajiδ

h
k );

(ii) Dicjk −Djcik −Dkbij = 0.

From (31) (i) it follows

(32) ajk =
1

k(n2 − 1)
(nRjk + Rkj)

where the components Rjk = Ri
kij define the Ricci tensor field obtained

from the curvature tensor field of D. Remark that Rjk is not necessarily
symmetric. Then the condition (31) (i) becomes

(33)
Rh

kij =
1

n2 − 1
{δh

i (nRjk + Rkj)− δh
j (nRik + Rki)}

− 1
n− 1

(Rij −Rji)δh
k

therefore the connection D must be projectively flat. From (33) and the
second Bianchi identity we also get

Diajk = Djaik

and since bij = 1
2k(n+1) (Rij−Rji) it follows

∑
(i,j,k)

Dibjk = 0, i.e. the 2-form

defined as the skew-symmetric part of aij is closed. Then the condition
(31) (ii) is identically verified.

Hence we may state

Theorem 12. Let M be a smooth manifold with dim M > 2 and let
D be a torsion-free linear connection on M . Consider the nonlinear con-
nection on T ∗M defined by (29), where Γk

ij are the connection coefficients
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of D and the components cij (resp. bij) are defined as the symmetric part
(resp. the skew-symmetric part) of aij given by (32). Then the almost
parahermitian manifold (T ∗M, G,P ) with G defined by (4) and P defined
by (16) is a parakaehlerian manifold if and only if the connection D is
projectively flat.

Remark. If cij is a nondegenerate symmetric tensor field of type (0,2)
on M then it defines a (pseudo-) Riemannian metric g on M and assuming
that D is the Levi Civita connection of g and bij = 0, then the condition
(31) (ii) is identically verified and from (33) we get: Let (M, g) be a
(pseudo-) Riemannian manifold with D the Levi Civita connection of g.
Consider the nonlinear connection on T ∗M defined by (29) where Γk

ij are
the connection coefficients of D, cij are the local coordinate components
of g and bij = 0. Then (T ∗M, G,P ) is a parakaehlerian manifold if and
only if (M, g) has constant sectional curvature k (see Theorem 2 in [8]).

By using Theorems 3 and 12 from this paper and Theorem 6 from [6]
we obtain

Corollary 13. Let M be a smooth manifold with dim M > 2 and let D
be a torsion-free linear connection on M . Consider on T ∗M the nonlinear
connection defined by (29), where Γk

ij are the connection coefficients of D
and cij (resp. bij) are the symmetric part (resp. the skew-symmetric part)
of aij given by (32). Then the almost parahermitian manifold (T ∗M,G, P )
with G defined by (4) and P defined by (16) is a parakaehlerian manifold
if and only if the pseudo-Riemannian manifold (T ∗M,G) is locally sym-
metric.

Another parakaehlerian structures on cotangent bundles can be ob-
tained in the cases of complex and quaternion manifolds.

Let (M, F ) be a complex manifold with the almost complex structure
defined by the tensor field F of type (1, 1) such that F 2 = −I and denote
by D a torsion-free almost complex connection on M , i.e. we have DF = 0.
Consider on T ∗M the nonlinear connection defined by the components

(34) Nij = −Γk
ijpk + k(pipj − F k

i Fh
j pkph) + cij + bij

where Γk
ij are the connection coefficients of D on M , Fh

i are the compo-
nents of F , k is a nonzero constant and the components cij (resp. bij)
define a symmetric (resp. skew-symmetric) tensor field on M thought of
as a symmetric (resp. skew-symmetric) M -tensor field on T ∗M . In this
case we have that Nij is of the form (20) where bij are independent of pk

and the components
0

N ij are given by

(35)
0

N ij = −pkΓk
ij + k(pipj − F k

i Fh
j pkph) + cij .
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We obtain by a straightforward computation that the condition (24) which
must be fulfilled for (T ∗M,G, P ) to be a parakaehlerian manifold becomes:

(36)
−{Rh

kij + k(aikδh
j − ajkδh

i + aijδ
h
k − ajiδ

h
k + ajlF

l
i F

h
k − ailF

l
jF

h
k

− ailF
l
kFh

j + ajlF
l
kFh

i )}ph + Dicjk −Djcik −Dkbij = 0

where Rh
kij are the local coordinate components of the curvature tensor of

D on M and aij are defined by

aij = cij + bij .

The condition (36) is equivalent to

(i) Rh
kij = k(ajkδh

i − aikδh
j − aijδ

h
k + ajiδ

h
k + ailF

l
jF

h
k

− ajlF
l
i F

h
k + ailF

l
kFh

j − ajlF
l
kFh

i );(37)

(ii) Dicjk −Djcik −Dkbij = 0

From (37) (i), we obtain by a straightforward computation

(38) ajk =
1

k(n + 2)
Rjk +

1
k(n2 − 4)

{Rjk + Rkj − F i
jF

h
k (Rih + Rhi)}

Thus, in order for the condition (37) (i) be fulfilled it is necessary that
the connection D on M be H-projectively flat (see [13]). By taking into
account (38), from the expression (37) (i) of the curvature tensor field of
D and using the second Bianchi identity we obtain

Diajk = Djaik.

On the other hand, from (38) we have bij = 1
2 (aij − aji) = 1

2k(n+2) (Rij −
Rji), hence

∑
(i,j,k)

Dibjk = 0. It follows then that cij and bij defined as the

symmetric part respectively the skew-symmetric part of aij expressed by
(38) satisfy identically the condition (37) (ii).

Hence we may state

Theorem 14. Let M be a complex manifold with real dimension n >
2, the tensor field F defining the complex structure on M and the torsion-
free almost complex connection D. Consider the nonlinear connection on
T ∗M defined by (34) where Γk

ij are the connection coefficients of D and cij

(resp. bij) are the symmetric part (resp. the skew-symmetric part) of aij

given by (38), Rij denoting the Ricci tensor obtained from the curvature
tensor of D. Then the almost parahermitian manifold (T ∗M, G, P ) with
G defined by (4) and P defined by (16) is a parakaehlerian manifold if
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and only if the connection D is H-projectively flat with respect to the
considered complex structure of M .

Remark. If cij is a positive definite symmetric tensor field on M ,
then it defines a Riemannian metric g on M . We suppose that (M, g, F )
is a Kaehler manifold and that D is the Levi Civita connection of g such
that DF = 0. If we assume that bij = 0, then the condition (37) (ii) is
identically verified and from (37) (i) and (38) we get: Consider on T ∗M
the nonlinear connection defined by (34) where Γk

ij are the connection
coefficients of D, cij are the local coordinate components of g and bij = 0.
Then (T ∗M, G, P ) is a parakaehlerian manifold if and only if the Kaehler
manifold (M, g, F ) has constant holomorphic sectional curvature 4k (see
Theorem 3 in [8]).

By using Theorems 3 and 14 from this paper and Theorem 7 from [6]
we obtain

Corollary 15. Let M be a complex manifold with real dimension
n > 2, the tensor field F defining the complex structure on M and the
torsion-free almost complex connection D. Consider on T ∗M the nonlinear
connection defined by (34), where Γk

ij are the connection coefficients of D
and cij (resp. bij) are the symmetric (resp. the skew-symmetric part) of aij

given by (38), Rij denoting the Ricci tensor obtained from the curvature
tensor of D. Then the almost parahermitian manifold (T ∗M, G, P ) with
G defined by (4) and P defined by (16) is a parakaehlerian manifold if and
only if the pseudo-Riemannian manifold (T ∗M, G) is locally symmetric.

Consider now (M, S) a quaternion manifold . Then M is a 4m-dimen-
sional manifold, S is a subbundle with fibre dimension 3 in the bundle
of the tensors of type (1, 1) on M and, locally, S has a canonical base
(F1, F2, F3) such that:

F 2
α = −I; Fα ◦ Fβ = −Fβ ◦ Fα = Fγ

where α = 1, 2, 3 and (α, β, γ) is any cyclic permutation of (1, 2, 3). Sup-
pose that D is a torsion-free linear connection on M adapted to the con-
sidered quaternal structure i.e. locally we have

DFα = −ηβ ⊗ Fγ + ηγ ⊗ Fβ

where η1, η2, η3 are locally defined 1-forms associated with the adapted
linear connection D.

Consider on T ∗M the nonlinear connection defined by the components

(39) Nij = −Γk
ijpk + k

(
pipj −

∑
α=1,2,3

(Fα)k
i (Fα)h

j pkph

)
+ cij + bij
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where Γk
ij are the connection coefficients of D, (Fα)k

i are the local coordi-
nate components of Fα, k is a nonzero constant and cij (resp. bij) define a
symmetric (resp. skew-symmetric) tensor field of type (0,2) on M thought
of as a symmetric (resp. skew-symmetric) M -tensor field on T ∗M . In this
case the considered nonlinear connection is of the form (20) where bij are

independent of pk and the components
0

N ij are given by

(40)
0

N ij = −Γk
ijpk + k

(
pipj −

∑
α=1,2,3

(Fα)k
i (Fα)h

j pkph

)
+ cij .

We get by a straightforward computation that the condition (24) for
(T ∗M,G, P ) to be a parakaehlerian manifold becomes

(41)

−
{

Rh
kij + k

[
aikδh

j − ajkδh
i + aijδ

h
k − ajiδ

h
k +

∑
α=1,2,3

(
(Fα)l

i(Fα)h
kajl

− (Fα)l
j(Fα)h

kail − (Fα)l
k(Fα)h

j ail + (Fα)l
k(Fα)h

i ajl

)]}
ph + Dicjk

−Djcik −Dkbij = 0

where Rh
kij are the local coordinate components of the curvature tensor of

D on M and aij are given by

aij = bij + cij .

The condition (41) is equivalent to

(i) Rh
kij = k

{
ajkδh

i − aikδh
j − aijδ

h
k + ajiδ

h
k +

∑
α=1,2,3

[− (Fα)l
i(Fα)h

kajl

+(Fα)l
j(Fα)h

kail + (Fα)l
k(Fα)h

j ail − (Fα)l
k(Fα)h

i ajl

]}
;(42)

(ii) Dicjk −Djcik −Dkbij = 0.

From (42) (i), we obtain after a straightforward computation

(43)

ajk =
1

4k(m + 1)
Rjk +

1
8km(m + 1)(m + 2)

(Rjk + Rkj)

+
1

16km(m + 2)

[
Rjk + Rkj −

∑
α=1,2,3

(Fα)h
j (Fα)i

k(Rhi + Rih)
]
.

Thus, in the case of almost quaternion structure, the condition (42) (i) is
fulfilled if and only if the curvature invariant is trivial (see [9]). But this
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condition, together with the existence of the torsion-free linear connection
D adapted to the considered almost quaternion structure are the conditions
under which the almost quaternion structure is integrable, i.e. M is a
quaternion manifold. From (42) (i), (43) and the second Bianchi identity
we also obtain

(i) Diajk = Djaik; (ii)
∑

(i,j,k)

Dibjk = 0

which imply that the condition (42) (ii) is identically satisfied.
Hence we may state

Theorem 16. Assume that the smooth manifold M with dim M > 4
carries an almost quaternal structure with a torsion-free linear connection
D, adapted to this structure. Consider on T ∗M the nonlinear connection
defined by (39) where Γk

ij are the connection coefficients of D and cij (resp.
bij) are the symmetric part (resp. the skew-symmetric part) of aij given by
(43), Rij denoting the Ricci tensor obtained from the curvature tensor of
D. Then the almost parahermitian manifold (T ∗M, G,P ) with G defined
by (4) and P defined by (16) is a parakaehlerian manifold if and only if the
curvature invariant of the considered almost quaternal structure is trivial
(equivalently, the almost quaternal structure is integrable).

Remark. If cij is a positive definite symmetric tensor field on M then
it defines a Riemannian metric g on the quaternion manifold (M, S). Sup-
pose that the linear connection D is the Levi Civita connection of g. If we
assume that bij = 0 then the condition (42) (ii) is identically verified and
we get: If we consider on T ∗M the nonlinear connection defined by (39)
where Γk

ij are the connection coefficients of D, cij are the local coordinate
components of g and bij = 0, then (T ∗M,G, P ) is a parakaehlerian mani-
fold if and only if the quaternion Kaehler manifold (M, g, S) has constant
Q-sectional curvature 4k (see Theorem 4 in [8]). We also remark that
the quaternion projective spaces are manifolds with the properties from
Theorem 16.

By using Theorems 3 and 16 from this paper and Theorem 8 from [6]
we obtain

Corollary 17. Assume that the smooth manifold M with dim M > 2
carries an almost quaternal structure with a torsion-free linear connection
D, adapted to this structure. Consider on T∗M the nonlinear connection
defined by (39), where Γk

ij are the connection coefficients of D and cij

(resp. bij) are the symmetric part (resp. the skew-symmetric part) of aij

given by (43), Rij denoting the Ricci tensor obtained from the curvature
tensor of D. Then the almost parahermitian manifold (T ∗M, G, P ) with
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G defined by (4) and P defined by (16) is a parakaehlerian manifold if and
only if the pseudo-Riemannian manifold (T ∗M, G) is locally symmetric.

Consider now a real manifold M carrying a tensor-product structure
(see [3], [4]). Such a structure is defined on a manifold M with dim M = rs
and is obtained as follows. Let S be a tensor field of type (2, 2) on M
satisfying the conditions:

(i) Sik
ij = rδk

j ; (ii) Shi
ij = sδh

j ;

(iii) Sij
kh = Sji

hk; (iv) Sst
ihShl

jk = Stl
jhShs

ki = Stl
khSht

ij ;

(∗) for every point x ∈ M there exists a neighborhood U of x and a
vector field X 6= 0 defined on U such that S(X ⊗X) = X ⊗X.

The integrability conditions for this structure is fulfilled in the case
r > 2, s > 2 iff there exists a torsion-free linear connection D on M
adapted to the structure, i.e. DS = 0. Moreover, the curvature tensor
field of such a connection has a special expression.

Tensor-product structures are defined on the real Grassmann mani-
folds Gr(Rr+s).

From the above conditions for the tensor field S we get easily the
following properties of this tensor field:

Sij
stS

st
kh = δi

kδj
h; Sis

jtS
tk
sh = rSik

jh; Sis
thShj

ks = sSij
kh; Sis

ktS
tj
hs = δi

kδj
h.

We shall show that in the case of a manifold M carrying an integrable
tensor product structure there is a nonlinear connection on T ∗M such that
(T ∗M,G, P ) is a parakaehlerian manifold.

Let D be a torsion-free linear connection adapted to the considered
tensor-product structure, i.e. DS = 0. Consider on T ∗M the nonlinear
connection defined by

(44) Nij = −Γk
ijpk +

1
2
(Shk

ij + Shk
ji )phpk + cij + bij

where Γk
ij are the connection coefficients of D and cij (resp. bij) define a

symmetric (resp. skew-symmetric) tensor field of type (0, 2) on M thought
of as a symmetric (resp. skew-symmetric) M -tensor field on T ∗M . In this
case the considered nonlinear connection is of the same form (20) where

bij are independent of pk and the components
0

N ij are given by

0

N ij = −Γk
ijpk +

1
2
(Shk

ij + Shk
ji )phpk + cij .
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We get by a straightforward computation that the condition (24) which
must be fulfilled for (T ∗M, G, P ) to be a parakaehlerian manifold becomes

(45)
−ph

{
Rh

kij − ailS
lh
jk − ailS

hl
jk + ajlS

lh
ik + ajlS

hl
ik

}

+ Dicjk −Djcik −Dkbij = 0

where Rh
kij denotes the curvature tensor of D and aij are defined by

aij = cij + bij .

The condition (45) is equivalent to

(46) (i) Rh
kij = ail(Slh

jk+Shl
jk)−ajl(Slh

ik+Shl
ik ); (ii) Dicjk−Djcik = Dkbij

From (46) (i) we get

aij =
1

2(r + s)
(Rij −Rji)

+
1

(r + s)2 − 4

{
r + s

2
(Rij + Rji) + Rhk(Shk

ij + Skh
ij )

}
.(47)

Replacing the expression (47) of aij in (46) (i), next by using the
second Bianchi identity we obtain

Diajk −Djaik = 0;
∑

(i,j,k)

Dibjk = 0

which imply that the condition (46) (ii) is identically verified.
Hence we may state

Theorem 18. Let M be a smooth manifold with dim M = rs; r > 2,
s > 2 carrying a tensor-product structure defined by the tensor field S and
let D be a torsion-free linear connection on M , adapted to this structure.
Consider on T ∗M the nonlinear connection defined by (44), where Γk

ij are
the connection coefficients of D and cij (resp. bij) are the symmetric part
(resp. the skew-symmetric part) of aij given by (47), Rij denoting the
Ricci tensor obtained from the curvature tensor of D. Then the almost
parahermitian manifold (T ∗M, G,P ) with G defined by (4) and P defined
by (16) is a parakaehlerian manifold.

Finally, we define other almost parahermitian structures on T ∗M as
follows. Consider hij ; i, j = 1, . . . , n, the components of a nondegenerate
M -tensor field of type (0, 2) on T ∗M and denote by hij the components
of the inverse of the matrix (hij); i, j = 1, . . . , n. On TT ∗M define the
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automorphism Q expressed in the local frame adapted to the direct sum
decomposition (1) by

(48) Q

(
δ

δqi

)
= hik

∂

∂pk
; Q

(
∂

∂pi

)
= −hik δ

δqk
.

The following result is obtained by a straightforward computation

Proposition 19. The automorphism Q given by (48) defines an almost
product structure on T ∗M if and only if the M -tensor field hij is skew-
symmetric, i.e. hij = −hji.

Assume that M is an even-dimensional manifold whose cotangent bun-
dle T ∗M carries a nondegenerate skew-symmetric M -tensor field hij of
type (0, 2). We may check easily that the pseudo-Riemannian metric G
defined by (4) on T ∗M and the almost product structure Q are related by

G(QX,QY ) = −G(X, Y ); ∀X, Y ∈ Γ(T ∗M)

thus:

Proposition 20. (T ∗M, G,Q) is an almost parahermitian manifold.

Now it is posible to obtain some classes of almost parahermitian man-
ifolds on (T ∗M,G, Q) according to the classification in [1] (see [8] for the
case when the considered nonlinear connection on T ∗M is symmetric).
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[3] T. Hangan, Sur l’integrabilité des structures tangentes produits tensoriels réels,
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ROMÂNIA

E-MAIL: voproiu@uaic.ro

N. PAPAGHIUC
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY, IAŞI
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