The gammaoperators in L’ spaces

By VILMOS TOTIK (Szeged)

§ 1. Introduction

The gammaoperators [3]
. — va-l r — Xu [") def ~ [n]
G,,(f,x)—Tofe u"f;du:! g (x u) f|-)du (x>0)

were introduced by M. MULLER and A. LupAs and several papers have been devoted
to the investigation of their approximation-theoretical properties. Concerning global
uniform approximation we have proved in [7].

Theorem A. Let f be a continuous and bounded function defined on (0, =).
For every O<a=1 the statements

IG.(f)—-fl=Kin~% n=12,...
and

exIA:(g; x)l = thhs h > 0? xE(— o9, °°)s g(x) =f(€‘)
are equivalent.
Here
43 (g: x) = g(x—h)—2g(x)+g(x+h)

is the usual symmetric second difference of g.

The aim of the present article is to prove the analogous result in the LP-metric.
It is easy to see that for every function f€LP(0, =) G,(f;x) is defined for every
x=0 and n=2. Now the analogue of Theorem A in L” is

Theorem 1. Let ¢(x)=x, 1=p<-o, fELP(0, ) and O<a=l.
Then the relations .

(1.1) 1Ga () =S Lr,=) = O(n™%) (n =)

———
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and
(1.2) 1430 (N0, = = O(h*)  (h ~ 0+0)
are equivalent.

Corollary 1. For any O<a=1 (1.1) is equivalent to
(1.3) { [ e4i(e: DPax}” = Kn*, g(x) =/(), (h=>0).

Corollary 2. /f a=1 then for p=>1 (l1.1) is equivalent to the fact that f has a
locally absolutely continuous derivative f* with x*f"€ L?(0, =), and for p=1 (1.1)
holds if and only if f is locally absolutely continuous and x*f’(x) is of bounded varia-
tion on (0, =).

Naturally, it is understood in Corollary 2 that f coincides a.e. with a function
having the stated properties.

We made the assumption O<a=1 because a simple modification of our proof
shows, that {G,} is saturated of order {n~'}, i.e. f€L?(0, =) and

lim inf n |G, () —f 2, = 0

implies that f'is zero a.e.
Now let us introduce the following modified LP-modulus of smoothness:

m(f'! 6); o ui‘:ga "qup(f)ill."(o.m)’ (p(X) = 6 = 0.

This @ has the usual properties of the ordinary LP-modulus of smoothness
(i.e. when ¢@=1) e.g. there is a K independent of f. =0 and A=1 such that

(1.4) o(f; 20), = Ki*w(f; d),

(see [5, Theorem 1]).
For O<=a-=1 Theorem 1 is contained in

Theorem 2. Let 1=p<-co, fEL?(0, ) and
En(f) = "Gn(f)_fﬂl.’(o.u)-

Then there is a constant K, depending only on p such that the estimates

(1.5) E(N = Ko, V_ln;]
and 14
hold.

We shall prove Theorem 2 in the next paragraph while the proof of Theorem
1 will be given in § 3.
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§ 2. Proof of Theorem 2

In what follows @(x)=x and K is a positive constant depending only on p
and not necessarily the same at each occurence.

I. PrROOF OF (1.5). Let LP=L?(0, <), | .ll,=|l - I Lr@,) and
2.1) K(fi1),= ’ieng (lf—gll,+ 2l o*g”ll,),
(2.2) D, = {gcL”|g’ loc. abs. cont., ¢p?g”cLP}
the so called (Peetre-) K-functional. In [6] we proved the estimate
(2.3) K(f: 0, =Ko(f: 1, (0=<1t<1).
Therefore, if we show that for n=2
(2.4) 1G.(Nll, = KIfl, (fELP)
and

; B oo :

25) 1GNNSl =102 fl, (fED))

are satisfied then choosing a g,€ D, with the property
: Bonich g I
1= glyt o loesl, = 2K(£: =)
p
(see (2.1)) we obtain by (2.3) the required estimate:
NG () —=fll, = 1G(f— gl + 1 f— gall , + 11 G (80) — g.llp =

x[nf g, +—||wg..lip] KK[ Vn] "Kw[j yn),

For later application we shall prove somewhat more than (2.4), namely

1 1fp ) .
(26) Gy, :(H—;] i, (feLr.n=2)
A change of variable yields
2.7) G, (f: x)— 22 .

Now let us use the fact that the norm of an integral is not greater than the integral
of the corresponding norms (cf. [4, p. 271]) by which

| eo P l/p ol o
[f f . dx} ‘:‘j t”{ dx} dt =
e 't"tMP  [(nt1/p+1
=1f1, [ S = 1, oD <
] [(n+ D)) =Y2 (I (n+2))? (n+1)ve
=1, CeH O =1, 85

where, at the last but one step we also applied the convexity of log I'(x) (see [1].)
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In the proof of (2.5) we need the following lemma
Lemma 1. /f x=0, n=2 and

h.() = (t;zx)* max[l; %]

then
G.(h:: x) = ]—0
n
Indeed. a simple calculation gives (see e.g. [3]) that
: x*
G, ((1—x)*; x) = o n=2
and so

s o r -2 N _ : g — =
Gu(h.\" 'Y) -y ‘if gu(xe u)"‘ [" x] mdx[], n ]du

2n/x e
= f + f = 2x~2G,((r—x)3; x)+4x—2"+l(;,,+1((:-x)2: .r)-;_'-l—:.

0 2n{x

where we used the identity (ux/m)g,(x, u)=((n+1)/n)g, . (x, u) and the fact that
for u=2n/x. n=2 the inequality

(o) <ofe)

holds.
Returning to the proof of (2.5). for an feD, we can write by Taylor’s formula
(2.8) f () —f(x) =_/"(-\‘)(f—.\')+f (t—u) f"(u)du =
t—=x
; B R
= f(x)(1 x)-f.nf W(_(.u up* £ (x+u)) du.

Here

i = a1 3) e -2
by which

: | ’(;i—;)f((xwy f7(x+uw)dul = “;f)' max[l; %)Mwﬂf”; X)

where M (g: x) denotes the Hardy— Littlewood-maximal function of g (see [4, p. 5]).
Now for p=1 the maximal-inequality ([4, p. 5]). (2.8) and Lemma | together with
the easily verifiable facts

G, (;x)=x, G,(1;x)=1, |G,(g;x)| =G,(g:x) for |g|=g,
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yield
NG () =S, = Ga(h.: IM(@*Sf7; ), =

10 g K2
= — 1M (@), = ;“(P'f Uy

which is (2.5).

For p=1 we choose a more direct argument. All the transformations below
are permitted because of the nonnegativity of the occurring functions. Using (2.8)
and G,(t—x:x)=0 we obtain

16 () =Flh = f ["m = u f (u)du] A ndr dx =

f j[]’-““ -{l-{—u] |f (u]|du] : lr" dr dx+
F L F)rora S e

o n nx/t
= jlfm fh( Ydudx dt- "f f f( )dudx dt

n nxlt
o
f[ [m?{ e “] ffr] \f lu)idn] dt+

—l'ri!

+f [f[wm[u—ﬂg]dx] 'f"{u)ldu] s -
l(f* N L

nu_ Vet
If ' n[f[ ("H),dr]du—

T
-, 2| A 5 i
= Euf w? | f7(u) du

ar =

dudr =

since an easy computation gives
~ (nu 2e-tntl
f (— —u| ———dt =
: T (n+1)!

2[ i I'(n) . I'(n+1) F(n+2)]_ u*
"o+t m=1! “+D n meD!' )~ n+t’

The proof of (1.5) is thus complete.
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I1. PrOOF OF (1.6). We shall use the following lemma which is a modification
of a result of A. GRUNDMANN [2].

Lemma 2. Let # be a Banach space, DS # a linear subspace, S:D-+-#,
T,.B—+D (n=2,3, ...) linear operators with the properties

29) ST = KanlfI (e%)
and
2.10) istn = (145151 ey

where K, is a positive constant. Then

; 1 K, [ T - ]
A | [ S = —1| - =
(2.11) ;gg[llf gl +— HSgII] = — 1,f|+i12;||T,f S =23 )
where the constant K, depends only on K, .

PrOOF. Let 2"=n<2"*! E;=|T; f—f|l, and for O=v<m let k, be defined by
k&2, E =. . mm E.

v <izav el

Clearly, i K[-:}-] is the infimum on the left of (2.11) then

@.12) K(3) =17 A1 450 1ST 11

and we can see by (2.9) and (2.10) that here
W5, S =18 _ UL  INHIST, T _J] =

= K kn-1E;,_, il R
Iterating this it follows by 2*=k, =2"*' that
IST,,,_.fll = Kl[ w-1E4,,. [1 | S A,

k), Eh] (1422 )...[1+%]|13Th/'|1 =

-1

=K, ﬂ' 1——][22 PE, +1<11,fn] K,[S;Eﬁ-llflll

v=0

which, together with (2.12), proves the lemma.
Now let us apply Lemma 2 with #=L"?(0, =), D asin (2.2). Sf=¢*f", T,=G,.
If we show (2.9) and (2.10) then we obtain from the lemma that (see (2.1))

(2.13) K(f ] [Ilfil +Z'i|G(D ee 4
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Since the inequality w[ ¥ —lﬁ =KK ( i & }%] was proved in [6, Theorem 1] the
P

estimate (1.6) follows from (2.13‘,).
Thus, there remains to be shown that

(2.14) le*Gy (NI, = Kn|fll, (fEL?, n=2)
and

v K -
(2.15) I0*G(Nl, = (1+5) 10271, (eD,. n=2)

are satisfied with a K independent of n and f.
Let us begin with (2.14). Since for fixed x=0 and (h)<x/2

/(3)

1

it |
—uh

e tl

iy

e~ ux+h o £ (%)—e‘"u"f[%]

=

=

= Kelhlug—uxyn+1

f [i]l = Keus/ 41
u

it follows from the dominated convergence theorem that

d[f e_"‘u"f[%] du] o

pr :__of e‘“‘u"*‘f[%]du

and applying this once more we obtain

1218). PG %) = f %ﬁlf[%]du — f ((n — xu)*4(n—2ux)) X

X g (%, u)f[%] du = nf g*(x, u)f[%] du+nG,(f; X)—
where

—2(n+1)G,,+1[f["—:—T-];x]

(n—ux)u"e ",

1
8 (%, 4) = 2+ (n—ux) ga (%, 4) = T

Simple computations give

[ ai(x wydu = %[f [n2g, (x, w)—2n(n+1)g,. 1 (x, u)+
0 0

+(n+1)(n+2) guea(x, W]du) = 1+ 3
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and (use that I'(x+1)=xI"(x))

- T 1 " 1 1
ng,,u,u) 75 8% = = |#*T ntl+— —2nT n+2+—)+

n

F(n+1+1/p) i —2n(n+1+1/p)+(n+1+1/p)(n+241/p)

L3
— K
n!n'/? n

+r[n+3+——]]

and so (2.6) and its proof give (2.14) (see (2.16)).
It is easy to give a formal proof for (2.15). We obtain from (2.7) that for f€D,

(2.17) : | G:(f; x) o f e;"'[" :_:f” %‘E] drt

and so, by (2.6),
1/p
Hcp’G.‘:’(f)II,,é[Hni] l|co*fll,*=1[1+§]nqo3f”ll,.

To justify this formal approach all we have to prove is that the derivation after the
integral sign in (2.17) is permitted. But

3 mh=243(G,(1): ) = Gi(f: )
Tilﬂ}h 2[f[ﬂ(x—h)] 2f[nx] j[n(x+h) )] Tzf [ ]
and
- ] () )2

Py __pyntl 2o
— i f h—2 [e—ﬂx-ﬁ)lx.rl u] —28_'1‘"+e"(‘+")!*1" [X'i‘h] ]f[_’?.ﬁ] ot
n! s x B =

a.e.

II&

f e ,.(t)f[%] dr.
An easy consideration gives for |h|-=:-2— that we have

h=2 %, a ()] = K, (1 4+ 2+ €M) = K, (141247

and so, by the dominated convergence theorem (2.17) follows from the relations
above. :
The proof of Theorem 2 is complete.
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§ 3. Proof of Theorem 1

That (1.2) implies (1.1) for all p and « follows from Theorem 2, (1.5). Also,
the implication (1.1)=(1.2) for 0<a<1 follows from Theorem 2, (1.6) (see also
(1.4)).

Thus, there has remained to show that (1.1) implies (1.2) for «=1 and all

=1. To this end we first verify that if g€C?(0, -==) has compact support in (0, )
and if

AL =n [ (G(H~fe (feL)

then -,_
| |4.(f; 8)| = Kl f1,

with a constant K, independent of f€L” and n=2.
Indeed, with the notation
| 1
b = )
(W) =g =

[ [ rx]_f(x)] g(x)drdx| =

we obtain by a change of variable

ff

|4,(f; &) =

=n

— (%) [ --x (x)] dt dx| =

ff(")[("“)[o"“[" (n+l)x) h["(n_fﬁi']]Jr

+'[(n+ l)h[—('—l-;iﬁ-;)—nh [%]]} dx|.

Let g(x)=0 outside the interval (a, b), a=0, b<<. By Theorem A

G,.+1(h (n+l)X] h[(n:l)x]

(n+1) = K

7

Il'u

and for x=af2

n N _ ; . -
0 ()~ ()] = Vi 4 10H1yp = S

(for x<af2 the expression on the left hand side is zero), and these together with
the preceding equality prove our statement for p=1.
If p=1 then we argue as follows. Let

J;_»,,(Jr) =(n+ l)}Gn+ll(h-; (n-:l)x ]*_h [ (n-:l)x ]‘

4*

lIA

K

(”“”‘(( -’rl)x)
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We have just seen that p,(x) is bounded, |p,(x)|=Kg, which gives

2b
f Pa(x)dx = K.

(+1}x] [ ] 0 and so

fl”n(x)dx= f et 5 (xt)dr dx =

For x=2b we have h

nf2 e_g‘rn+l bnft

e bnjx et +1
= f f rﬂ [ 1:]drdx=f - g(£] dxdt =
2b  anlx h 0 n: anjt n
n/2 e~ T+l B e-mz(nlz)awl
Ek,of ——dt = K;n—————=o0(1)

where, at the last step we used the Stirling formula. Thus,

[ n®dx=K, |p.x)|=K
1]

which imply by the Holder-inequality

(= [ IS DIpax)dx = 11, 1plg =

= If1, I p el ¥ = K, | £1, [%+% -1

what was to be proved.
An easy consideration gives (cf. [8, Lemma 5.5] and [3]) that if f€C?*(0, =)
MLP0, =) then

tim n(G,(f: )~/ (x)) = 52/ (%)

uniformly on compact subsets of (0, =). Thus, if feC?*(0, «)(L?(0, =) and g€
€C?*(0, =) has compact support in (0, =) then

AU 9% tim 4,(9) =5 [ ¥/ (g () dx

0

exists and integrating by parts twice we can see that

A0 =5 [ (2e() F()dx.

Since we verified that |A4,(/, g)[=K,|fll, and C?*(0, =) L"(0, c.;) is dense in
L?(0, =), it follows that A(f, g) exists for every f€L?(0, =) and gecC*(0, =),
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support g £(0, =), furthermore,
.
AL 9=~ [ (x*g()"f(x)dx.
o

Now let us suppose that |G,(f)—f|,=O0(n""'). By weak-compactness there
is a subsequence {n,} of the natural numbers such that {n (G, (f)—f)} converges
weakly to a h€LP? for l<p<=-c and to a bounded signed Borel measure u for

p=L.
Let us consider first the case p=1. We have

o

G 5 [ SO(e@) dx = A(f ®) = Jim 4, 0) = [ h(x)g()dx
0 1]

for every g€C?*(0, =), support g<(0, =). One solution of (3.1) is given by

fl(x)=ff2h(“) du dr

u2
and, as a standard argument gives, the associated homogeneous equation
;_f F(x)(x*g(x))"dx=0 (geC*(0, =), support g S (0, =)) has only solutions that
0
are linear (a.e.) (sketch of this last assertion: putting

1 if y=x=y+a or y+3a=x=y+4a
(x*g(x)" =1—-1 if y+a<x=<y+4a
0 otherwise

into the preceding equality and differentiating with respect to a it follows that
f(v+a)—3f(x+3a)+2f(y+4a)=0 for a=0 and almost every y=0. Then the
x+1/n

same holds everywhere for the continuous function F,(x)= f f(w)du. If F,

is non-linear then subtracting a linear function from it we can suppose that for some

¢,d>0 F,(c)=F,(d)=0 but F,(x)=0 for x€(c,d). If y+3a€(c,d) is a maximum

point of F, and a is small then y+a and y+4a must again be maximum points —
x+1/n

contradiction. Thus, each F, is linear and so f(x)= limn f f(u)du is also a linear

X

function (a.e.)). Thus,

f(x)=aer!:bJrj:Ifz‘h

{.,u) dudtr (a.e.)
u-

by which x?f”(x)=2h(x)€ L?(0, =). Now (1.2) follows from this by [5, Theorem 2].
Similarly, in the case p=1 we have

2du(u)

uw

dr.

f(x)=ax+b+ f f
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Here a=0 since the last term on the right tends to zero as x—-== and f€L'(0, ==);

and so
1 : < du(u)
-—2x3f(x)——x-f —h

X

We shall prove that %.\'2 f'(x) is of bouhded variation on (0, ==) and then [5,

Theorem 2] yields (1.2). If || denotes the total variation of u then for all points
O=x;<..<Xx,.1<< we have

‘21 53 )= xer S ()| = 2 "‘dluJ:u)
¢ Bt [ < 3 i

*i+1

no e d el (w) ~dlul(u)
+ ‘é; -f?;f T+-"f+1 f 7 i 2|lu| (0, ) <<=

Tne1

which proves that %.\'z f7(x) has finite total variation on (0, o).

The proof of Theorem 1 is complete.

Finally, we prove the corollaries. Corollary 2 is an immediate consequence ol'
Theorem 1 and [5, Theorem 2]. To prove Corollary 1 let g(x)=f(e*) (x€(— ==, =)).
Making the change of variable log x==u we obtain that for O0<=h=1

([ 14805 0P = { [ edigain (e 0P} +
p 4 _
+{ fe"[g(u—log(l—h))—g(u+log(l+h))l’du}”"= Iy (h) + Iy (h).

If we assume (1.3) then I,(h)=Kh*. Let O<t<1 and let m be chosen according
to i =2"1=1. Since
g(x+20)—g(x)—2(g(x+1)—g(x)) = 47(g; x)
where
A (g x)=g(x)—2g(x+1)+g(x+27)

is the second order forward difference of g, we obtain

{fe"'H(H-f-T) g(u)["}l“" %{ fe"lg(u+2r) g(u)[’a‘u}”’

+%{_£ e |47 (g: WP du}'’”
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the iteration of which yields

{ fe"lg(u+r)—g(u)|’du}”’§ -Z_'l-;—l{ fe"ldgs_-,(g; u)]’du}”'+

i=1

+2L"'{ fe“M;’"-:.-(g; u)i'du}”’g

=K "'2_'1 27 L@ )+ K2 fl, = K 327 (2 =
i=1 i

i=1
! if 0<2x<1
1 .
= {log ?]t if 2a=1
T if 1<2a=2

liA

K7

Putting here 1= —log (1—=h)—log (1 +h)~h* we get

oo

I(h) = K{ f e"Ig[u+r)—g(u)l’}”’ = Kt* = Kh*.

Collecting our estimates we can see that (1.3) implies (1.2). That (1.2) also implies
(1.3) can be proved by the same method (using the transformation e“=x) and
the proof is complete.
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