Functional equations of sum form

By L. LOSONCZI (Lagos and Debrecen)

1. Introduction
Let I', denote the set of all complete n-ary probability distributions, that is
Lo={p=(1, s P[P =0 i=1,.n Zp=1)

and Ni={p=(py; ..., P)|P;=0 i=1,....n; é‘;!’i:]}- The characterization of

entropies of degree « leads to the functional equation

k 1 k I k 1
(1) 2 2Spa)= 2 fp)+ 2 fg+4i Z f(p) 2 f(g)
i=1j=1 i=1 = i=1 i=1

where pel'y, gel',, 2=2'""*—1 is a constant and f:[0,1]—=R is the unknown
function (see e.q. AczféL—DARrRGczy [3], Losonczr [15]). Allowing different func-
tions in (1) we obtain

"
(2) ;;Z: _;=2; [fii(pig))—q;gi(p)— pihj(q;)—2g:(p)h;(g;)] =0

for pel,, q€l';. In some cases p,q lie in I'y, I'} respectively. Equations like (2)
also arise in various characterizations of measures of information depending on two
probability distributions.

The aim of this paper is to investigate a wide class of functional equations and
obtain general methods for their solution.

We study the equation

k I
3) 2 3 Fypi9) =0

i=1 j=
where either F;: [0, 1]* =R, pel'y, q€I', or F;: (0,1*—R, pely, gel'f and
k,1=3 are fixed integers. An equation of form (3) is called a functional equation
of sum form.

In Section 2 we prove some lemmas which serve as our main tool in finding

the general solution of (3) in Section 3.
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In Section 4 we specialize our results for the equation
k 1 N
(4) iZI _2,; [fii(pig;) — 2; ga(p)h;(q)] =0 (pely, q€T)
=1 j= t=

(or peI'}, ger}). This is the most important (but still quite general) special case
of (3). Equation (3) has been solved if all functions F;; are equal and pel,, g€T,
(see LosoNCzi—MAKSA [18]). Apart from this and a result of Kannappan [13] con-
cerning the measurable solutions of (3) if perI',, q¢I, all sum form equations which
have been investigated so far are of form (4). In some cases however some of the
functions g;,, h;, are known (KANNAPPAN [11], [12], LosoNnczi—MAKsA [17] (while
in other cases the condition k,/=3 is not satisfied (DAROCZY [7], DARGCZY—
JARrATI [8], Losonczi [15], MAKsA [19]).

We show that under measurability conditions (4) can be reduced to the equations

N
&) Jijey)— ;; gu(X)h;(y) =0 (x, ¥€[0, 1)

(i=1,....k: j=1,....,1) where f;, &, h; are new unknown functions obtained
from f;;, g, h; by adding suitable linear functions. Concerning (5) see AczfL [1],
AczEL—CHUNG (2], JAraT [10], LosoNczr [16], MCKIERNAN [20], SzZEKELYHIDI [24],
VINCZE [25].

We remark that if the domain is open (i.e. pel'y, g€I}) or the conditions
k,1=3 are not satisfied only the measurable solutions of some special cases of (4)
have been found (KANNAPPAN—NG [14], SaHo0O [22], [23], DARGCZY—JARAT [8]).
Finding the general solution of equations of type (4) requires individual treatment
for each equation (see LosoNczi—MAKsa [17], [18]).

In Section 5 we show how the general methods of sections 3, 4 work by solving
some equations of type (4). Related equations have been investigated by several
authors, among others by AczEL—DAROCZY (3], BEHARA—NATH [5], CHAUNDY—
McLeop [6]. KANNAPPAN [12], [13]. Losonczi [15], MAKsA [19], MitTAL [21].

Through the paper we shall apply, if convenient, the following notations.

I and 4, will denote either [0, 1] and I, or (0, 1) and I'Y.

If fis a real valued function defined on a set G containing /* and r, 2ré/ then
the difference operator D} (i=1, ..., k) is given by

(D}'f)("'lv seey x;‘- sany ,\'*) m—
=00 X x) H Os e 2 ) =2 (T X)) (s W)EG

If f1s a function of a single variable then we use D" instead of Dj.
It is easy to check that D! is a linear operator having the following properties.

D5 D; = D3D;
(Dp) = D;
and
Dif=f

if fis additive in the ith variable.
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2. Basic lemmas

Our main tool in solving sum form equations in the next lemma which has been
proved in a less general form by LosoNnCzi—MAKsA [18].

Lemma 1. Let k=3 be a fixed integer, ¢ a constant. The functions ®;: [—~R
(i=1, ..., k, R is the set of reals) satisfy the functional equation

k
(6) ig.; P;(p) = ¢ (pedy)

if and only if there exists an additive function a: R—R and constants b; (i=1, ..., k)
such that

0 P;(x) =a(x)+b; (x<1),
(8) a(l)+_ﬁ'bi=c
hold. &

Proor. Case 1: I=(0,1), A,=TI7}. Let first k=3. Take an & from (0, 1) and
choose two different indices n, r from the set {2,....k}. Let O=x,y,x+y<ec.
Substituting into (6)

) Pr=2X, Py =29, P =8—(x+)), ps = :%; (s#1,nr)
we get
(10) &, (x)+@,(»)+ P, (e—(x+p) = ¢,

where ¢, is a constant. Since the right hand side of (10) is symmetric in x, v we obtain
P (x)-P(x)=D,(¥)—P,(y) O=x,y, x+y=¢).

Substituting y;, y,€(0, &) here and observing that the left hand side is the
same for x€(0, e —max {y,, ys}) we conclude that

P, (1) =P (1) = Py (y2) — Py (y).
Since &€(0, 1) is arbitrary
(11) e,(MN-P,(»)=d, (¥€0,1); n=2,...,k)
where d,’s are constants. Using (11) we obtain from (10)

(12) D (xX)+ P, (V)+Py(e—(x+p) =€, O<=x,y,x+y<¢)

. s o2 & €
where e, is a constant. Substituting x=— then y=—

> > and deducting from (12)

the equations so obtained we get

D,(e—(x+)) =@, [%—x]+¢1 [%—y]+ez [0 <X,y < %]
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This means that the function
¥ (x)=2,(x)—e,

is additive on the square S,;g={(x, »0=x, yd%}, that is

Y(u+v)=¥w)+¥@) if (u,v)€S,,.

Applying the quasi-extension theorem of Daréczy—Losonczi ([9]), Theorem 4) we
conclude that there exists a function a,: R—R additive on RX R such that

Y(u)—2¥ (o) = a,(u)—2a,(x) u€c(0, &)

~

Y(u)—¥ () = a,(u)—a,(x) uc [0, %]
where (2. a) is a fixed point of S,j,. Therefore ¥(x)=a,(2) and
(13) D (u) = ¥Yw)+e, =a(u)+e, if uc(0,e).
Hence, for 0O<g,, &=<1 we have a,(u)+e,=a,(w)+e, if uc(0, min {g, &}))
which implies a,,=a,,=a, e,,=e,=e and
(14) &, (u) =a(u)+e
for u€(0,¢) thus for u€(0,1) as well. By (11), (14)

?,(x) =a(x)+b, (x€(0,1), n=1,..,k)
which proves (7).
If k=3 then instead of (9) we use the substitution

Bh=X, Pa=Y, Pp=1—(x+p)

where O=Xx, y,x+y=<1. Repeating the calculations above with ¢=1 (and with
some omissions) we get (7).

It is easy to see that (7) is a solution of (6) if and only if (8) holds.

Case 2: I=[0,1], 4,=T,. By Case 1 we have (7) for x€(0,1) and (8). Thus
we only have to show that @,(0)=b;, @®(1)=a(l)+b; (i=1,...,k) 1.e. (8) holds
for x=0 and x=1. Substituting e.g. p;=0, (ps.....p)ErE_, into (6) and using
(7) for x€(0, 1) and (8) we get

k k
c=@,(0)+ “_Z;[a(p;)‘Fbs] = &, (0)+a(l)+ 2 b

i=2
thatis @,(0)=b,. Similarly @;(0)=b; for i=2, ..., k. With p;=1, p,=...=p,=0
we obtain from (6)

k
¢1(l)+ Z bi =
i=2

hence, by (8). @,(1)=a(l)+b, and in the same way @;(1)=a(l)+b; (i=2.....k).
Corollary 1. Equation (6) holds if and only if
(15) @, (x)+ D,(2r)—20,(r) = a(x) (x€1, i=1, ..., k)
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or if (D'®;)(x)=a(x) and
16) a(l) = c+ 3 (@21~ 20,7
i=1

holds where r is a fixed value in I such that 2rél.

PrOOF. From (7) with x=2r and x=r using a(2r)=2a(r) we easily obtain
b;=2®,(r)— ®;(2r) hence (7), (8) give (15), (16).

Corollary 2. Suppose that one of the functions ®,, ..., ®, is measurable. Then
(6) holds if and only if

k
== Z ¢m(r)
17) D,(x)—D,(r)— T-—lkr (x—-r)=0 (xcl,i=1,...,k)
where rel is a fixed number with kr—1=0.

Proor. If e.g. @, is measurable then by (7) so is the additive function a hence
(see Aczél[1]) a(x)=a(1)x. With x=r from (7) ®;(x)— P,(r)=a(1)(x—1), calculating
a(1) here we get exactly (17).

Lemma 2. Let k, =3 be fixed integers and suppose that the functions F;;: I*—~R
(i=1, ..., k; j=1, ..., 1) satisfy the equation

ko1
3) 2 2 Fij(pi, q)) =0 (p€4y, gc4).

i=1j=1

Then there exist functions a;: RXI-R (j=1,...,1) and b;:IXR—~R (i=1,...,k)
such that a;(-,y), bi(x, +) are additive for every fixed value of y, x€l respectively
and for every fixed values r,scl with 2r,2sc] we have

(18) (D3 DY Fyj)(x, y) = (D3 D] Fyy) (x, y)+a;(x, y)+bi(x, y)

syl i=1 ..k =10
moreover a,=b;=0.

Proor. Equation (3) can be rewritten as
k
(19) iZ; Di(pis 15 ---» @) =0 (p€4,, g€4)
where
1
PP, Grs s ) = '1 Fu(Ps ‘I,')-

Jj=

From corollary 1 formula (15) we get

D;¢"—'D;¢1=0 (i - I, veey k)
that is

2 (DXF) 3, 4)~(DLF ). )] = 0.
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Applying corollary 1 again there are functions b,: /)X R— R additive in the second
variable such that

D3(Dy Fu_D'x'Fu) (x, y) = bi(x, y)
or

(20) (D3 DY Fyj) (x, y)—(D3 DY Fyj) (x, p) = bi(x, ¥)

with b, =0, i=1,..., k.
Interchanging the roles of the indices 7, j in the above reasoning we get.

(ZI) (D;D; Fij)(x! y)_(DEDiEl)(xs y) = aj(-‘a }‘) (.’ — ]'s vywy 0

where a;’s are as described in lemma 2 and 4, =0. From (20) and (21) our represen-
tation (18) follows immediately.

Lemma 3. /f (3) holds then we have
(22) (D3 DY Fyj)(x, y) = a;(x, »)+bi(x, N+¢(x, »)
CEPEL = S Rk Je L 1)

where a;: RXI—~R, b;: IXR—~R are functions additive in the first, second variable
respectively, ¢;;: RXR—R are biadditive functions (i.e. additive in both variables),
r,s are fixed elements of I with 2r,2s€ 1.

Proor. Writing (3) in the form (19) and applying corollary 1 we get

1
(23) ZL(D: Fij)(xs q;) = a(x0 Grs +ees q;)
j=

where a: RXA4,~R is additive in the first variable. Let now H={h,/y€S} be a
Hamel-basis of the real numbers over the field of rationals such that Hc/l. If x=
= 2 ry(x)h(x)= 3 r.h, (r, is rational, h,c H the summation extends to a finite

nur;ber of indices'depending on x) we have

a(x, qys s @) = 2 rea(hy, qus s q))
thus by (23)

1
;; [(D; ‘Fl'j)(x! ‘?;)_ Z ra(D; F‘ij}(haﬂ ‘?;)] =0 (l = I-: beag "‘)
We apply corollary 1 again (keeping x, 7 fixed) to get
(24) (D3 DY Fj) (x, y)— 3 ro (D DL Fyj) (hy, ») = by(x, y)  (x, y€I)

v
where b;: IXR—R is additive in the second variable. Define a;: RX/—+R by
the equation

(25) a;j(x, y) = 2 ry(Dy Dy Fij)(hy, y)

if x=2'r,h,€R, yel then a; is additive in the first variable and by (24), (25)
(26) (DiDYF)(x, y) = a;;(x, ¥)+b;(x, y) (x,yel).
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Interchanging the roles of the variables p;, ¢; in the above argument we get
27 (DID3 Fip)(x, y) = ay(x. y)+b;;(x, y) (x,y€l)

where ;. b;; are additive in the first, second variable respectively.
A comparison of (26), (27) shows that

(28) a;;(x, y)—a;(x, y) = b;;(x, y)— 5;(-’5, ) (x, yel).

Defining ¢;;(x, y) by the right hand side of this equation we see that ¢;;: /IXR—R
is additive in the second variable and by (28) it is also additive in the first variable
on the triangle {(u, v)|u, v, u+v€el}. Applying theorem 4 of [9] we conclude that
there exists a biadditive extension ¢;;: RXR—~R of ¢;;. Since b;;(x, y)=b;(x, y)+
+¢;;(x, ¥) we obtain (22) from (27).

3. The solution of equation (3)

First we determine the measurable solutions of (3).

Theorem 1. Suppose that k,1=3 are fixed integers, F;:1*+R are functions
such that Fy;(-,y) (j=1,...,0), Fa(x,+) (i=1,...,k) are measurable for every
JSixed value of y, x€1 respectively. Then (3) holds if and only if

(29) F--(x, y) = F;j(x, s)+ F;;(r, y)— F;;(r, 5)+

(I‘, y) au(r S)]+— Z[Fu(x S) Fiv(r S)}-{—

=]

x=n(r—9) < 2
+(kr-—l)(!s—l) Z ZFm.(’ s) (Y }El s niksed =N f)

u=1v=

holds where r,s are fixed numbers in I with (kr—1)(ls—1)##0.

In other words, if Fj(x, +), Fj;(+,y) are measurable then the general solu-
tion of (3) is given by (29) where x-—F;;(x,s), y-F;;(r,y) are arbitrary functions
(measurable if i=1, j=1 respectively) having the same value F;(r,s) at x=r,
y=s respectively.

Proor. Writing (3) in the form (19) and applying corollary 2 we obtain
1 Xe==p k
3 [Fse 0= Fur0)- 225 3 Fyrq)] =0
j=1 r u=1
Using corollary 2 again we get

Fy(xo )= Fyr D=t 3 Furs 9)= Fiy (3. 9+ Fy 0, "er T 2 Fulty9)-

Z iv ir

S‘—] pm1 u=1

which is exactly (29).

Bty s)] =0
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The next theorem gives the general solution of (3).

Theorem 2. Let k,!=3 be fixed integers, F,;:I*-~R (i=1,..,k; j=1,..,1)
functions satisfying (3). Then

(30) (D3 DY Fij)(x, y) = Aj(x, y)+ Bi(x, )+ C(x, )

or, in detailed form,

(1)  Fy;(x, y) = 2F;;(x, 5)— Fy;(x, 25)+2F;(r, y)— F;;2r, y)+
+2F;;(r, 25)+2F;;(2r, 5)— F;;(2r, 25)—4F;;(r, 5) +
+A;(x, y)+Bi(x, »)+C(x, )

G, yel,i=1,..k; j=1,..10

where r,s are constants with r,s,2r,2s¢1 A;: RXI-R (j=1,...,1) and B;:IX
XR—+R (i=1, ..., k) are additive functions in the first and second variable respectively,
C: RXR-R is a biadditive function such that there are additive functions a,b: R—~ R
with the properties

(32) a(y)=(DiA,-)(1,.P)+§;[2(D§ﬂ;)(?‘, N-(DyFp)Q2r, ), €L j=1,..,1D

(33) b(x) = (D{B)(x, 1)+121' 2(DLF)(x, )—(D{Fi)) (x, 29)], (x€L, i=1,.., k)

(38 aW+bM+CA, 1) = 3 [4;(1, 29-24,(1, s)1+‘i’ [B,(2r, 1)—2B,(r, D]+
i=1 -]

& 1
+ 3 2 [2F;(r, 25)+2F;;(2r, s)— F;(2r, 25)—4F;;(r, s)].
i=1j=1

Conversely, functions of the form (31) satisfy (3) if (32), (33), (34) hold.

ProOF. Suppose that (3) holds. By Lemma 2 and Lemma 3 (formulae (18), (22))
we get (30) where A;=a;+a,, B;=b;+b,, C=¢,, are functions with the additi-
vity properties stated in theorem 2. (31) is just a reformulation of (30).

Now we show that (31) is a solution of (3) if and only if (32), (33), (34) hold.
Substituting (31) into (3) and using the additivity properties of A4, B;,C we get

35) ;,,21 (4,1, a)+ 3 @Fy(r, a)~Fy(2r, 4)] =

& 1
=—-d-C(1,1)—- Ig; [Bi(Pii l)‘*‘jg; (2FEJ(P19 s)— Fy;(pi, 25))]

ko1
where d=2' 2 D;; and

i=1j=1
(36) D;; = 2F;(r, 2s) + 2F;;(2r, 5)— Fi;(2r, 25) —4F;;(r, 5)
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is the “constant part” of F;;. By corollary 1, applied for the function

k
P;(y)=A;(1, M+ :2; [2F;;(r, y)—F;;@r, )],

(35) holds if and only if there exists an additive function a: R—R such that (32)
and

k [
(37) a(l)=—-d-C(1,1)— 2: [Bl(pis )+ 2,; (ZFU(P;' s)— Fi;(pi, 25))] +
- fu

1 k
+_;2 [4;(1,25)-24;(1, )+ iZ' (2F;;(r, 2s)— F;;(2r, 25) —4F;;(r, s)+2F;;(2r, 5))]
=1 =1

hold. (37) is again an equation of type (6). Applying corollary 1 for (37) we see that
it holds if and only if there is an additive function b: R-R such that (33) and

(38) b(1) =—d—C(1, 1)—a(1)+

I k
+ ' [A4;(1,259)—24;(1, 5) + 2 (2F;;(r, 28)— F;;(2r, 25) —4F;;(r, ) + 2F;;(2r, 5))] +
Jj=1 i=1

k I
+ 3 [Bi(@2r, 1) =2Bi(r, 1)+ 3 (2F;;(2r, 5)— F;;(2r, 25)—4F;;(r, 5)+2F;;(r, 29))]
=1 i=1

are valid. Using the definition of D;;,d (38) reduces to ‘(34). Thus we have proved
that the functions (31) satisfy (3) if and only if (32). (33), (34) hold.

Remark. If 1=[0, 1] we may choose r=s=0 in(31) and obtain
(3l)* F:'j(xs J") = Fij(x'- 0)+F}}(0) y)_F‘ij(Os 0)4‘ Aj(xa )")"_Bi(xs y)+C(x. )')

as the general solution of (3). ((32), (33), (34) have much simpler forms too).
The following theorem shows how equation (3) can be reduced to the equation

A
‘Z; Z; F(pi, q;) =0 (p€4,, qc4).
=] =

Theorem 3. Suppose that k,l=3 are fixed integers, F;;:I*~R are functions
satisfving (3) and r,s are constants with r, s, 2r,2s¢1. Let

(39) Fij(x,y) = (D3 D; Fj)(x, y)+
k
+x[2F;;(r, 25) - 2F;;(r, )+ E(Z(DE F.)(r, »—(D3F,)(2r, y))]+
+ y[2F;;(2s, r)—2F;(r, )+ Zl’(2(Dl' F.) (x, $)—(D} F;,) (x, 29))] -
v=1

—xy[ Zk" (2F,;(2r, 5)—2F,;(r, 5))+ é’ (2F;,(r, 25)—2F, (r, 5))+
w-=1 r=1

+ 3 3 (QFur 290+ 2F (25, ) Fun(2r, 29)~4F (1, 9))]
1
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if x,yel, i=1,....k; j=1,...,I. Then for all possible fixed indices i,j we have

k ]
(40) g‘l g:Fij(pm‘ Q‘u) = 0 (PEAM qEAI)

ProOF. By theorem 2
(30) (D3 DY F;j)(x, ¥) = Aj(x, y)+ Bi(x, y)+C(x, y)

and (32), (33), (34) hold. Using the additivity properties of A4;, B;,C we easily
obtain from (30) that

(41) A4;(1,29=24;(1, 5) = (D Dy F,)) (1, 25)—2(D3 D} Fy)) (r, §) =

= 2ﬂj(r9 25)_2[:1‘]'('.9 s)
and
(42) B;(2r, 1)—2B(r, 1) = 2F;;(2s, r)—2F;(r, s).

By (32) and (41) the coefficient of x in F}; is exactly a(y)—A4;(1,y) while that of
vis b(x)—B;(x,1). Thus F;; can be rewritten as

F.j(x, y) = A;(x, )+ Bi(x, )+ C(x. )+ x[a(»)—A4;(1, )]+ y[b(x)— B;(x, N]—
-—xy[é'(B,(Zr. 1)—2B,(r, 1))+ i'(A.,(I.Zs)—ZAl.(l.s))+Zk' )fD,,d
u=1 v=1

u=]1p=]

where D,, is the expression defined by (36). If we use the additivity properties of
A;, B;,C,a,b we get

k 1 1 k
2 ZFij(pm‘ Qn) = -Z;AJ(]‘ qn)+ z;Bitpm‘ ”‘I“C{l, l)+

m=1n=1

1 k
+0(1)- ;;Aj“a Qn)+b(l)_ ;Bi(pms l)_'

— 3 (B.(2r, 1)-2B,(r, 1))— 3 (4,(1, 29)—24,(1, §)— 3 3D, =0
u=1

r=1 u=1c=1

which completes the proof.

4. The investigation of equation (4)
Equation (4) can be obtained from (3) by choosing

N
(43) Fij(x, y) = fi(xy)— Z; gu(X)h;(¥) (x, yel).

Theorem 4. Let k,I=3 be fixed integers and assume that the functions f,;,
Jas & hy (=1, .., ks j=1,....1: t=1,..., N) are measurable. Then

1 N
(4) Z 4 [ﬁj(l’i‘i’;)“lg; gix(Pi)hﬁ(q,-)] =0 (ped,, gcd)

k
i=1j=1
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holds if and only if

2 N. . :
(44)  Fy(x, y)—"Z;Qu(x)Ep(y) =0 (oyelyim), ki Gul)
where

@) F.--(x, D)= PV~ (XS — i (P £, (rs) +
l Z(f (xs) j},,(rs))-{-

uj

(x—n(y—
+(l—kr)(] m Z Z'ﬂw(rS),

u=1v=

(46) g (%) = g (x)— gu(r)+ k Z Zu (1),

1) R = R h )+ z o (5)
Ul kel im0 N % M1
r.s are being arbitrary elements of I with kr=1, Is#1.
Proor. Applying theorem 1 for the function (43) we immediately obtain (44).
Remarks 1. If 1=[0,1), 4,=T, we may choose r=s=0. Then (44) reduces to

¢ N
(48) fij(xy)— _Z;E.-;(x)ﬁ,-f(}-‘) =0 (x,yel; i=1,..,k;j=1,..1D
where K

(49) i:;(x) fu Y) ﬁi(0)+t Z;. Z.f;ll(o)

and g,. h;, are obtained from (46), (47) with r=0, s=0.
2. Since (44) holds for every fixed pair (i, /) of indices it is also an equation of
type

N
S(xy)— 21 g(X)h () =0 (x, yel).
1=
For the sake of simplicity we specialize theorem 3 only in the case 7=[0, 1].

Theorem S. /f k,1=3 are fixed integers and (4) holds for all pcl',, gcI'; then
for all possible fixed pair of indices (i, j) we have

k i N
(SO) g; g; [.’-‘ij(pmqn)rfg: gr‘:(pm]ﬁj:‘qu)] =) (pG r*, qEr,]

where f, ; Is given by (49), and g;. ﬁj, are obtained from (40), (47) by substituting
r=gs=0.

s.
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Proor. We may choose r=s=0 hence (39) goes over into
F,-,-(X. y)= F;j(x, J")“Fij(x’ 0)_Fij(0; _V)+F}j(0. 0)+

k ! k 1
+Xx z;' [Fuj(oo }’)*— F"J-(O. 0)] Ty ‘,_Z; [F},,(x, 0)_.. Fiv(o- 0)]+xy Z Z Fsv(ov 0)

u=]1p=1

Now F;; has the form (43) thus
= N
Fij(x, y) = fi;(xp)— géf.(x)ﬁ,-.(y)-

The proof is completed by applying theorem 3.

5. Applications

First we find the measurable solutions of (2). Introducing the functions

(51) Fii(x) = x+if;(x), Gi(x) = x+2gi(x), H;(x) = x+2h;(x)
x€[0.1]: i=1,...,k: j=1, ...,/ equation (2) can be written as

WAL
(32) . }2 [f}j{P;‘Ij)"Gi(Pi)Hj(q;)] =0 (perly, q€l)

iml j=1

provided that 2#0. If f;,,f,;,g.h; are measurable then by theorem 4 (52) holds if
and only il

(53) Fuxp)=Gx)H;(») (xy€[0,1);i=1,..,k j=1..,D
where by (46). (47) (with r=5=0), (49), (51)

Y
Fu-(x) = x+4;(x)=f;; 0)+ix 3 2 fu(0),

u=1rv=1

k
(54) Gi(x) = x+2gi(x)—4g(0)+ ix 3 g,(0),
w=1

I
H,;(x) = x+4h;(x)—2h;(0)+ ix 3 h,(0).
r=1

Lemma 4. /f f,g. h:[0, 1]+ R satisfy the functional equation
(55) S(xp)=gx)h(y) (x, ye[0, 1]
and g, h are measurable, g(0)=h(0)=0 then

0 x€E n(x) x€E
h(x :{

(56) f(x)=0 x€[0,1], g(x)= {S(x) xcF 0 x€F

or
0 x£[0,1) 0 x€[0,1) 0 x€[0, 1)
hix ={

) J(x) = Llh L 8lx}= {a x =1, b x=1
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or

abx® x€(0,1)] ax® x€(0, 1] bx? x€(0, 1]
) f(")={ 0 x=8 gx—{o x =10, hx)h{() q=0

where E, F are disjoint measurable sets whose union is [0, 1], O¢E, 3,n are arbit-
rary measurable functions on E, F respectively such that 3(x)=0 x€E, n(0)=0,
o, a0, b#0 are arbitrary constants.

PrOOF. If g(1)=0 or h(1)=0 then (55) shows that f(x)=0 on [0,1]. Let
E={x€[0, 1] |g(x)=0} then 0€E, E is measurable.  is arbitrary on £ and zero on
F=[0,1]—E since on F g(x)#0. Then h(0)=0 and g is arbitrary on F. This
gives solution (56).

If g(1)h(1)#0 then the substitutions x=1 and y=1 give h(y)=f(y)/g(l)
and g(x)=f(x)/h(1) thus f(x)=f(x)/g(1)h(1) satisfies

(59) J&xp) = Fx) () (x. y<[0, 1]).

We have f(1)=f(1)/g(1)h(1)=1. We claim that either f(x)=0 if x€(0,1) or
f(x)#0 if x€(0,1). Namely if there exists an x,€(0, 1) with f(x,)=0 then by
(59) f(x)=0 for x€(0,x,). For any y€(0,1) we can find an x€(0,x,] and a
positive integer n such that y"=x. Hence 0=f(x)=f(")=[f(»)]" and f(y)=0.
If f(x)=0 x€[0,1) then we obtain solution (57) with a=g(1), b=h(l).
If J(x)#0 x€(0,1] then f(x)=F(Jx)*=0 for x€(0, 1]. By (59) the function
F(f)=In f(e™") t€[0, =) is measurable and additive in the first quadrant:

F(t+s)= F)+F(s) t,s=0.

Thus (see AcziL [1], AcziL—ERDGs [4]) F is linear and f(x)=x* if x€(0, 1],
J(1)=1. This gives solution (58) with a=g(1), b=h(l).

Theorem 6. Let k,!=3 be fixed integers [, f1;. & h; (i=1,....k; j=1,...,1)
be measurable functions and suppose that (2) holds for all pcl'y, q€lI'y and A#0.
Then
X & ok 1
f':f(x) - _T_*'aij_x 2 Zaun'*'j:Fij(x)-

=] pe=]
X k 1
gi(x) = _7+ﬂi_x 3 ﬁu+76;(-¥),
u=1 -

o
A

x€[0,1]; i=1,...,k; j=1,...,1 where oy, p;,y;, are arbitrary constants and
F;;. G;, H; are given in the following way. All possible pairs (i,j) of indices can be
divided in three disjoint sets A, B, C such that if (i,j)€A then

: 1
hj(x)=—>+7;—x ;1'};.+7 H;(x)

= 0 x€E; _ n;(x) x€E;
Fij(x) =0 XE[O, 119 Gi(x) _— {9((1') x€F, J == {
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if (i,j)EB then

0 x€[o, 1) 0 x€0,1) 0 x[o, 1)
Fij(x)_{a;bj x=1, Gi(x _{ s Hj(x)ﬁ[bj x=1
if (i,j)€C then
a;b;x% x€(0,1] a;x% x€(0, 1] - (b;x%  x€(0, 1]
F”(x)={ 0 x=0, G‘(")={ 0 x=0, Hf(")z{ T~ e

Here E;, F,; are disjoint measurable sets whose union is [0,1], OEE;, 3;, n; are
arbitrary measurable functions on E;, F; respectively sich that 3,x)#0 on E,
n;(0)=0. Depending on A the some sets E; may have to be equal. a;#0, b;#0, §;;
are arbitrary constants. Depending on C some constants 6;; may have to be equal.

The proof is immediate if we apply lemma 4 for equation (53).
As second example we solve the equation

k
(60) g’ _Zlf(psq,z)—O (pery, g€y

assuming the measurability of f.
Theorem 7. If f: (0, 1)—~R is measurable, k, =3 and (60) holds then

(61) J(x)=a [x——] (xE(O 1))
where a is a constant.

Proor. By theorem 4 (60) holds if and only if

lIy

(62) f(x}’)=f(x5) +f( J’)kx_l“f s )kr i ls-—l

for all x, y€[0,1), r,s€(0,1), kr#1, Is%1. With sz we obtain from (62) '

k

SOlk) =

or f(y)=ay+b if yG[O, —flc-] If r,s<min {—!lz-, %} then xs, ryG[O, %] thus (62)
gives

f(xy) = Axy+Bx+Cy+D (x, y€(0,1))
where 4, B, C, D are constants. Since f'is linear on [0, -:?] we get A=a, B=C=0,
D=b and
f(x) =ax+b x€(0,1).

This is a solution of (60) if and only if b= —-%a
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