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ABSTRACT

In this paper it is shown that generalized Waring distributions (univariate and bivariate) can
be determined uniquely from knowledge on the form of certain conditional distributions and some
appropriately chosen regression functions.
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1. Introduction

Regressions of the form E(X|Y=y)=¢@(y) are of interest in many areas mainly
for prediction purposes. In the study of accidents, for instance, JOHNSON [3] obtained,
in the context of his accident proneness model, a linear form for ¢( -): then he
considered the resulting linear regression model for predicting the number X of
accidents to be sustained by an individual in a given time period conditional on the
number Y of accidents sustained by the same individual in a preceding time period.
In some of the problems considered in the literature which involve conditional
expectations of the above form, one of the random variables (r.2.’s) involved (Y)
is less than a equal to the other (X') and the mechanism through which such a relation-
ship between X and Y is effected has been represented by the conditional distribution
{P(Y=y|X=Xx), y=0, 1,2, ..., x; x=0}. In this connection, the binomial proba-
bility function (p.f.) has been considered for P(¥=y|X=x) and on the assumption
of a linear regression of X on Y, the Poisson, binomial or negative binomial distri-
bution has been arrived at as the distribution of X or ¥ (see e.g. KORWAR [5], XEKALA-
KI [6] and DAHIYA and KORWAR [1]. Other forms for ¢( -) or for the distribution
of Y|(X=x) have also been considered leading to other forms of distributions
(e.g. XeExKALAKI [8], [10], [11], IRWIN [2] studied a three parameter univariate
distribution, the univariate generalized Waring ditribution (UGWD), which is
more general in structure than the previously mentioned three distributions. In
point of fact, the Poisson, binomial and negative binomial distributions are limiting
forms of the UGWD. (For more details concerning the structure and properties
of this distribution see XEKALAKI [9], [11]). It would therefore be interesting to
examine whether a similar result holds for this more general distribution. This paper
deals with this problem. It is shown in section 2 that if the distribution of ¥ con-
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ditional on (X=x) is binomial (x;p), p fixed and independent of x and the
regression of X on Y is of a given form, the probability distribution of X is
identified as UGWD. (Identifiability problems for the UGWD and other discrete
distributions have also been examined by XeKALAKI and PANARETOS [12]). Similar
results are obtained in section 3 for the two-dimensi § al case. There, the bivariate
generalized Waring distribution (BGWD) defined by XEKALAKI [7] is involved.
Finally, in section 4, a bivariate generalized Waring distribution with independent
components is obtained on the assumption of linear regression for X; on (Y, Y5),
i=1,2 and of a negative hypergeometric distribution for Y,[(X;=x,), i=1,2.

Before obtaining the main results, we provide the definitions of the univariate
and bivariate generalized Waring distributions for ease of reference.

A non-negative and integer-valued r.v. X is said to have the univariate genera-
lized Waring distribution with parameters a, k, and ¢ (UGWD(a, k: ¢)) if its
probability generating function (p.g.f.) is given by

oF(a, k: a+k+o;s), a=0,k=0,0=0|s|=1

where agy=I'(a+p)/I'(a), a=0, PER and .F, is the Gauss hypergeometric
function obtained from

S (@)@ --- (@) 2
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for u=2, v=1.

A random vector (X,Y) of non-negative and integer-valued components is
said to have the bivariate generalized Waring distribution with parameters a, k, m
and ¢ (BGWD(a; k, m; g)) if its p.g.f. is

Ok+m)
Gy y(5,0) = —————F,(a; k,m; a+k+m+p; s, 1), a, k, m, 0
x,r( ) (a+9){k+m) l( 0 ) e =

(s, DE[-1, 1]X[-1,1]

where F, is the Appell hypergeometric function defined by

= B inba bW
Fl(a; b, bf; c: z, w)= Z 2 (r+DY(r) “l__

r=0 =0 C(r+‘) l‘! I!

2. Identifiability of the UGWD

Theorem 2.1. Let X and Y be two non-negative integer-valued r.v.s’ such that
the conditional distribution of Y given (X=x) is the binomial with parameters x
and w, that is

@) Pr=)x=x=g.=}|re 0<nx<t,0=1-x



Some identifiability problems involving generalized Waring distributions 77

Then

22) EX|Y = y) = y+o (a+y)k+y) Fa+y+1, k+y+1;a+k+y+1; @)

(a+k+e+y)  oFi(at+y k+y;atk+et+y; o)
a=0,k=0, p=0,
if and only if the distribution of X is the UGWD (a, k; 9).

PRrOOF. Necessity. Denote by ¢, and p, the p.f.’s of ¥ and X respectively and
let the distribution of X be the UGWD (a, k: ¢). Then from (2.1) we have

s [X X = X
2 (y]fr”tp Y Pt
x=y

l =3
23) Crir=y(D = 2= 2 BisPxl™ = =5 '
y A= ¥ inX—¥
g; [y] n?@*~? p,
But
o [* & ; k) — 4 2 A(xKx)
N\ o*rp = =
,g;()] LA (a+0)w ,é;, yix—=y)! (a+k+0)s

__ow  (m)  ay kg o @+ ) 0(k+ ) (0" _
(a‘l‘ﬂ)(h ,V! (ﬂ+k+9)(r) x=0 (a+k+9+}’)(x} x!

X 0w  (m1)  agy ke,
(a+9}1h yl (a+k+0)1yl

Substituting in (2.3) we get
GX|Y=y“) —

Fila+y. k+y:at+k+o+y: ob).

PoFy(aty, ktyiatktety: on
Fiaty, k+y, atk+o+y: 9)

Differentiating with respect to 7 and then letting =1 (2.2) follows.

Sufficiency. Consider (2.2) and let the distribution of Y|(X=x) be defined
by (2.1). We will show that the distribution of X is the UGWD(a, k: ¢). We have

| i
E(XIY — l) = — ngﬂxp.t'

y x=y

Substituting for g,,, and making use of the identity
%X x X
NOREEN N

_}'+l < X x— §ita @ ; dy+1 )
Zl[}!_!_]]ﬂ"P ’p.t+.} __;(.1+!)_ql_+.}'

y x=y+ v

we obtain

(24) EX|Y =y)=

Combining (2.2) and (2.4) we get

(a+y)k+y) oFila+y+ 1L, k+y+1;a+k+o+y+1; @)
(a+k+o0+y) Fy(a+y, k+y;a+k+e+y; @)

Ly 1) =1

u
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or equivalently

(4.1.7)
7w (a+p)k+y) FHlaty+l k+y+1;atk+e+y+1; ) -0
DT (atk+ety) JFi(a+y, k+y;atk+o+y; @) o

This is a first order difference equation in ¢, with a solution which is unique under

the condition > ¢,=1. Solving, we get
y=0

B yﬁl (a+i)(k+i) oF(a+i+l, k+i+l:a+k+o+i+l;¢9)
= T ko )G +1) Fi(a+i k+i;atk+o+i; @) &
(2.5)

amkyy  Fi(a+y, k+y; at+k+o+y; @)
(a+k+@)y»! oF (a, k; at+k+o: @)

Summing both sides over y we obtain

¥

s v _dp+nkpin F 1
Z Z (a, k; a+k+

- A (G+L+Q)(y+r, }] rl {8 1 e, (P}
or equwalently

2F.(a,k:a+k+9:n+<p): " (a+ 0w
oF (a, k; a+k+o: @) ®oweFi(a. ki a+k+o; o)

1 =g,
Therefore
Fla, k: at+k+o; @)
Substituting in (2.5) yields

Qwy T Ak
qy = =% Fila+y, k+y;atk+o+y: ).
Ty (a+0)x »! (ﬂ+k+9)(y)2 : ; g ETIF

This implies that the p.g.f. of ¥ is given by

(2.6) Gylt) = ;‘“-—21‘}(0. k:a+k+p; nt+@).
Bt ( + )1&]
u
@7 6= 3 3 epunr = 3 33 wernr =
y=0x=y y=0 x=y

= 35 3()are = 3piotnr= G+
x=0 y=0
Comparing (2.6) to (2.7) we deduce that the distribution of X is the UGWD(a, k; 9).
Hence the theorem is established.
Notice that the UGWD(a, k: ¢) belongs to Kemp’s [3] family of distributions

defined by
uFo(@: B A1)
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for A=v=p/2=1. Itis interesting, therefore, to observe that by an argument similar
to that used to prove Theorem 2.1 we can show the following more general theorem
involving the family in (2.8).

Theorem 2.2. Let X and Y be two non-negative integer-valued r.v.’s such that
the conditional distribution of Y given (X=x) is given by (2.1). Then the distri-
bution of X has p.g.f. given by (2.8) if and only if

u
II (i +y) i ts ¢ - 3
EXIY = y) =yp+ 9|22 WFolz+ O+ D1 p+(r+1)1: Jg)
i Y ” Fatyl: fol: 79)
I (Bi+y) SR L R

i=1

Note. The particular cases

(1) u=v=0, A=0
(i1) u=1. v=0,a= —n, n positive integer, A<0
(i) u=1, v=0, a=0, A=>0

provide characterizations for the Poisson (4), the binomial [n: -;—-]—] and the

l+}] respectively. Thus, Korwar’s [5] results are

special cases of Theorem 2.2. Moreover. the result of Theorem 2.1 can be obtained
from Theorem 2.2 for p/2=v=/i=1, a=(a. k) and f=a+k+o.

negative binomial [a:

3. The two-dimensional case

Theorem 3.1. let X,, X,,Y,, Y, be non-negative integer-valued r.v.’s such that
the conditional distribution of (Y,.Y,) given (X,=x,, Xo=X,) is the double bi-
nomial with probability function

Xp| [ X2 i o W —y —y2
(3.]) iz in = [V:] [1'2] Tfn“ﬂz"(ﬂl” Y1py¥rre

where O0<mny, ma<1, o=1—my, @a=1—1,, ;. y:=>0.

Then

(a+y,+ y)(k+yy)
at+k+m+o+ 0+,

(3.2) EX\Mh=»n.Ye=p)=n+ @y F(yy, 0)

and

(@+yi+y)(m+ys)
at+k+m+o+r+y,;

(3.3) EXY: = yi, Ta= 7)) =»+ @3 F(yy, ¥2)
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where
F(yy, y2) =

s Fl(ﬂ'i'.}’l‘i'}'z'i‘]; k+}'1+], m+_}'g+l; 0+k+fﬂ+@+)’1+}’g+l; @y, (Pg)
Fi(@+y+ys: k+yi.m+yy; a+k+m+0+y;,+ Yo @1, @3)

a,k,mo=0
if and only if the distribution of (X,, X,) is the BGW D(a: k, m; 0).
PROOF. Necessity. Let the distribution of (X;, X;) be the BGWD(a: k, m: 0)

and let that of (Y,, Y,)|(X;=x,, X;=Xx,) be given by (3.1). Denote by g¢,, ,, and
Px.x. the p.f’s of (Y,.Y,) and (X,.X,) respectively. Then, it is easily shown that

Q(k+m) Ay, + y) Kiyy) Miyg) (mys)r (mg2)®
(@+Dx+m (@+Hk+m+0)y4yy ! !

(3.4) GX]-J\':IY:.Yz(S’ f) =

XFi(a+y,+ e k4+y1,m+ys; a+k+m+0+y,+ye; @15, 920 gy, .7 "
But
(3.5) Gfl- fz{r) - Z ‘i')‘l-.l'z";r'ﬂ52 - 2 Z qu-l':[xl-x:pxhx'.'Shp" il

) T Xy Xy Fis Ve

b AN . [';i][f.:](rr.s)’l(nar}“rp,"‘“tpe"'“”px..,,=

F1:¥g Xy =¥ Xg =)y

- Z ZE 2‘ [‘::i)[.:::](?TlS]h(nz()h‘f’lxl_"."pﬂu_” Pxy,xa =

Xps Xy ¥y =0 yy =0 -

g 2 p.n.x;(ﬂls + @) (mal + @)™ = G.tl.xg(nl S+ @y, Tl +¢3).

Xy Xa

Here ' stands for the double summation 3 f Therefore, the p.f. of (Y;, Ya) is

rd re0 (=0

i Qtk+m) atyn-.vz:kmlmtm Tclh HS"
(“+Q)|‘.l(+ml (a+k+"‘!+9){"+r2) yl! )'2!

Dys. e

XF(a+y+yik+y, mtyy atk+m+o: ¢, Q).
Substituting for g,, ,. in (3.4) we obtain

le-x_'ﬂ"l. I"g(ss f} —

_ s Fi(a+n+ye+ i k+y+1, m+y,+1 a+k+m+o0+y+y:+1: 04, @)
Fi(a+y+ys:k+y,m+yy; a+k+m+o0+ vy +ys; @1, @3)

from which (3.2) and (3.3) follow.
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Sufficiency. Assume that hypotheses (3.1), (3.2) and (3.3) hold. Using an
argument similar to that used in proving theorem 2.1 we can show that

(3.6) E(X]lyl = V1, YS = “,'2) = -]',1+(.}Il+ l)ﬁ q}'l+l-l"! .
1 Gy

(3?) E(Xg“’l = J1» Yg = yg) — ."’:!+(}"2+ l)ﬂ Gy, ya+1 )
2 9.y

Then, combining (3.6) with (3.2) and (3.7) with (3.3) we obtain

Gyr+1,y. s (a+y,+y) (k+ yy)

(3.8 - . F,
) qy,,ye }'1+I (a+k+m+9+y1+yg)
yetr _ _ T2 (a+ y1+ps) (m+ y,) N
Qi yet+1 (@+k+m+o+y,+y)
where
F= Fila+y+ye+ i k4 i+ l.m+yo+1a+k+m+o+y,+ v+ 15 @1, 03)

Fi(@a+y+ys: k+y1, m+yy; a+k+m+0+y,+ya: @1, @2)

The unique solution to this system under the condition 2 ¢, , =1 is given by
Y Ve

-1 ¥p—1
(3.9) Gyrve = G0 [ (i, 0) 1T ha(1. 1)
i= J=

where h;(y,, yo) is the right hand side of the i equation of system (3.8) i=1,2
and ¢, is obtained from

y—1 yp—1
do0={ Z ([T m(.0) [T har. D))"
Yy 1= Jj=0

Substituting for h;(y,, ¥s) and ¢, o in (3.9) and taking the p.g.f. we obtain

(3.10) Gy, y, (5, 1) :(af-(% Fi(a: k,m; a+k4+m+9; nmys+ @y, mat+@s).
' (k+m)

Comparison of (3.10) to (3.5) shows that the distribution of (X, X,) is the
BGWD(a: k, m; p). Hence the theorem is established.

4. A result concerning bivariate generalized Waring
distributions with independent components

Consider (X;, X;) and (Y,.Y,) to be two random vectors with non-negative,
integer valued and independent components. Assume that

(7 S5 3 AR e SRR AR AR - B 127[—‘,Ti][xi__"}..]/[_mi_ni]'

i=1 2

m=0,n>0 »3=0L..x;i=1,2
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One may observe that if the distributions of X, X, are the UGWD(a,, m,+mn,; 0,)
and UGWD(a,, ms+ny; 05) respectively then the regressions E(X;|Y,=v,, Yo=p,),
i=1,2 are linear. Specifically one can show that

(gitmitni—Dyitai+n

(42) EXY,=n,Yo=y) = o tm—1

Y=l al =LA
The intent of this section is to examine whether the converse of the above result
is also true; i.e., whether starting with (4.1) and (4.2) one can deduce that the dis-

tribution of X; is the UGWD(a;, m;+n;: 0;), i=1, 2. Before answering this ques-
tion we prove the following lemma.

Lemma. Let (X;,Xs) and (Y,,Y,) be two random vectors with non-negative
and integer-valued components. Suppose that (4.1) is true and that P(X;=0)<]1,
i=1,2. Suppose further that

(4.3) EX|\Yy=»n, h=y)=apy+b, »b3=0,1,2,... i=1,2
for some constants a;, b;, i=1,2. Then,

(i) b,>0, i=1,2.

(i1) a>1, i1=12

PROOF.

(i) From (4.3) we have (since X;=Y,, i=1,2) 0=EX,|Y,=Y,=0)=b;.
Hence b;=0. But, if b;=0 it follows that

21 x; P(X; = x)) ("1)(m("2)(x2';/(m1+"1)(m(’"2+"2)(x2) = 0.
This implies that P(X;=x;)=0, x;=1,2, ...; i=1,2 which contradicts the assump-
tion that P(X;=0)<]1, i=1,2. Hence b;=0, i=1, 2.

(ii) Using (4.3) and the fact that X,=Y;, i=1,2 we have y,<E(X,|Y,=);,
Ye=y)=a,y;+b; for every y,, i=1,2, ie., b>(1-a)y;, »=012...;
i=1,2. Since b;=0 the latter inequality holds for all the values of y; only when
a;=1. This completes the proof of the lemma.

The theorem that will be proved in the sequel provides a positive answer to the
question posed at the beginning of this section, for the case ny=n,=1.

Theorem. Let (X,,X,) and (Y,.Y;) be two random vectors on {0, 1,2, ...} X
x{0,1,2, ...} such that P(X;=0)<1, i=1,2 and

8o .
B8 PYy=y.,Y =nlX,=%x,X, = x) = aH [m.+}.}1l. 1]/[:::,:11]
=1 ] bt
m>0; =012 ..,%;i=12
(Le. (Yy, Yo)l(Xi=xy, Xy=x,) follows the joint distribution of two independent
negative hypergeometric r.v.’s with parameters, m,=0, m=1, my=0, ny,=1). Then
(4.3) is true for a;=1+m ", i=1,2 if and only if (X,, X3) has the joint distribution
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of two independent generalized Waring r.v.’s with parameters m+1 and

e
a,'-'l ;

=My, 1T=1;2
ai—l :

Proor. The “if” part follows immediately from (4.2) for n;=1, i=1, 2.
“Only if” part. From (4.4) and (4.3) we have

(4.5) f g x;8(xy, Xp) = (a;3,+by) Z‘o Zﬁ: g(xy, x3)

=V ¥p P, Xy =¥, Xg=¥,
yi=00]92g---; i=1,2

where g(xy, Xp)=x! X3! P(X;=x1, Xo=Xp)/(my+1),, (Ma+1)(x,. Consider re-
lation (4.5) for i=1 and specialize it for y;=r and y,=r+1. Subtracting the
resulting equations by parts we obtain

((ay—D)r+by)G(r, yo)—oy 2;16(x‘._}'2) = (0 where

G(r,)= 2 g(r, x,). Applying the same technique to the above equation we get

[(a,=Dr+bJG(r, y))—[(a;—1)(r+1)+b,+a,]G(r+1, y,) =

Specializing this equation for y,=/ and y,=/+41 and subtracting the two result-
ing equations we obtain

[(ai=Dr+blg(r+1, D=[(a,=D(r+D+bi+alglr+1,0) =0

which, since from the lemma a;=1, becomes

b,

r+ 1
a,— o B & ) _
PR g, D=0 r=011L2.A=012...

ﬂl_'_]

(4.6) g(r+1,n—
r+

In a similar manner we obtain from (4.5), for i=2

b
I4+—2

@D g0 I+ -— g D=0, r=0,1,2,..,1=0,1,2, ..

2ﬂg+ bg
ag"_l

Solving the system of equations (4.6) and (4.7) we obtain

g(r, )= g(0,0) ] ] / 2ﬂu+bn—1] [2a3+ _;]
al_] r) l a0 ) o

R o T SRR 2 1 ) s S

6.
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Therefore
b b
P(X,=r,X;=1)=P(X, =0, stg)[_li (m1+|)(n[_sl] (ms'f'l)(n‘:
ay (r as—1/q
:_(201+b1—l [2az+b’_l] r!’!‘
a,—1 (r a,—1 (i

From the fact that a,=1+m; ', i=1, 2 and the condition Zﬁ f PlXi=r, Xy=D=1

r=0 =0
we obtain

2 ’ 2 .
P(X, =0, X,=0) JJ -2 - mi] ["' b m,] :
(m,+1) (m;+1)

j=1 a‘—l a,‘—l

Hence, (X,,X,) has a bivariate distribution whose marginals are independent

UGWD’s with parameters lfl i+, aa—il —my;, i=1,2. (The positivity

i i

of bj/(a;—1) is ensured by the lemma). Therefore the theorem has been established.
Note that XekALAKI [11] has obtained an analogous result for the univariate
case.
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