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1. Introduction

Let M be a smooth manifold of dimension 2r. We say that a 3-web is defined
on M if there is given three foliations 4,. 4., 2, of r-dimensional leaves in M such
that every point of M belongs to exactly one leaf of each foliation and the tangent
spaces of the leaves through a point of M are in general position.

The notion of a 3-web on a 2-manifold was introduced by W. BLASCHKE [4].
The generalization to higher dimension was studied by S.-S. CHERN [5]. A systematic
investigation of this structure has been made by M. A. Axivis and his followers
in the last 15 years [1].

We shall call the leaves of the first foliation 4, as horizontal leaves and of the
second family 2, as vertical leaves, their tangent vectors horizontal and vertical
tangent vectors.

Let P(M) be the subbundle of the linear frame bundle L(M) over M consisting
of the frames {e,,...,é¢,,é&,...,&), where é,...,e are horizontal, é,,...,¢&,
are vertical tangent vectors. We can define a tensor field on M with help of the third
foliation by the following way:

If v is a horizontal tangent vector at x€ M, let 2, v be the vertical tangent vector
at x such that »—2_» is a tangent vector to the leaf of the third foliation 4, through
x€M. The inverse map of 2, is denoted by Q,. The matrix

0 2,
2. 0

with respect to the frame {é,,...,¢,, &....,&} defines a tensor field 7, on M
having the property 7.2=id.

The adapted frame bundle Q(M) of the three-web is defined as the subbundle
of P(M) consisting of the frames {¢,,...,¢,,&...., &)} such that &=2¢;, i=
=1,...,r. S.-S. CHERN defined the canonical connection on the bundle Q(M)
uniquely determined by the structure equations [35]

d@' = — iA@' +a @/ N @,

~p -~ i ~ ~k
dd' = —iAN& —af N,



94 Péter T. Nagy

where ) are the components of the connection form, @', ....&", @', ...,@" are
the componcnts of the basic form over Q(M). and the tensor ﬁeld aj, is callcd as
the torsion tensor of the three-web. The invariants of this connection are the inva-
riants of the 3-web.

In the following we shall investigate the canonical connection, particularly
we shall give its description expressed by the Lie-loop structure on the horizontal
leaves induced by the 3-web.

2. The calculation of the connection form

The foliations of horizontal and vertical leaves of a 3-web give a local direct
product decomposition of the manifold M=UXV. If x',...,x" and )\, ...,y
are the local coordinates on U and V, the collection x',....x", »., ....)" will be
a local coordinate system on the manifold M. We suppose that the leaves of the
third foliation A3 are the level surfaces of the functions f'(x',...,x", », ...,)),
i=1, ..., r. It means that the 3-web is given by the equations:

it A s VP  FYEURY, =2,

i 08, o P s PICUNRY, Bty

At O o X PY i RN, P () = &),
where ¢, ..., ¢" are constant.

i ; ) i
We denote f/= (f i f}'_—_%.
and we denote by g, dnd g5 the inverses of the matrices f} and £}, respectively.
Jd 0
We shall consider the frame field {) Rl i v e on UXV. A
]

i i )
vector X a—x"-—y W

We can suppose that det (f/)=0, det (f})#0

is tangent to the leaf €4, if and only if

Jln g b .0 .
(f_; dx‘-f—f} d_v’) [X'ﬁ' Ylﬂ__}‘;] = (.

It follows that the map P, ,,: T,U-T,V can be written in the form

(1) P dx“’% = gifkdx/ ®—E-)—;
and its inverse is
0 i I
J — ol ’! ] T T
(2) Qidy ®)x' g Jidy ®8x"

. e : : {
The frame {g'} ;;—t,— é}é)_;'" I=L i r} is an adapted one, its dual coframe is

@' = fldx!, & =f}dy.
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We extend the connection wj from the adapted frame bundle Q(M) to the
larger bundle P(M) containing Q(M) as subbundle. We denote by @}, @ the com-
ponents of the extended connection form. and we compute their expressions in the

frame
{L Jd 0 0 }
A i N T b
which is a section of the bundle P(M). Our calculation is a modificated version ol

the calculations in [2].
By standard formulas we have

&) @ = gidf} + i ), @ = gidfj+ ol fP).
These forms satisfy the structure equations
0 = d(dx') = —@'Ndx' +gja;' f§ [k dx"\dx™,
0 = d(dy') = —@}A\dy' —glaj fi fx dy*Ndy™.
Using Cartan’s lemma we get

—i __ =i 921-; zf' h k]
(4) wj_g'[f)x"ﬂx’ dx" +" oy sdy +wpf¥| =

= glaxfnfFdx*+ 7, dxb,
>/ >/ a]ﬂ
)x"é)«’df ?J,djdy+w,f
=—gla a"f'*d)h“i';_,kdl >

where 1}, and Z,%, are symmetric in the indices j and h. Excluding the forms o}
from the equations (4) and (5) we get

&) @ =

o RO o i
dx"dx.l {+ xhd ) gl. +au£i.fhm+ﬁ‘ j‘bg{ = ()
and
E . A =~
oyt ox gt "oy gi+ai fir =8 = 0.
Using a,x= —a,',, we get from these equations
‘ fl
amlk S

e U
” awf! ﬂ“ " agff
2 =& (ox* o TS 2 dy™)°

T »*f! =m 7k *f!
M= (:)y"o‘y‘ B T T

where [..] and (..) denote the antisymmetric part and the symmetric part of an
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expression. We substitute these into (4) and (5), then we get

DO L
©) wj_-g'[r)xfax* gy & ]d"*

*f! *rf
Vv oyt oxm 8 jk] ay

Proposition 1. The components @ and @&} of the extended canonical connec-
tion form can be written in the form

o} = Ql, d(’?;n dx*, @=2%, (,Q:

Proor. Using the relations flgr=6, and flg"=46, we have

Bfm -m P ) | ((jff' afl" gm s i (‘)g*
Prad " ooxt T oy” T
Thus from the equations (6) and (7) follows the Proposition.

(7 @) = &

dy".

3. Parallel vector fields along horizontal and vertical surfaces
Let = and ¢ denote the projection maps n: M=UXV—-U, g: M=UXV-V.
Let be given a horizontal curve (x(1), o) andaa vectorfield X(r) along the curve
(x(1), o). The vectorfield X(1)= X’ +X‘ is parallel along (x(7), y,) if and

only if it satisfies the equations

ax dX'
g Y — ax’ _
@ X/ =0, ——=0.
Using Proposition 1 we get
dY i 077 X ¢ — [")(9’1‘?) ]
) +0R S X1 0 = 00 |25 0.
= Loy 3 ot B g 5
Similarly a vector field X(!):X‘a—xi-f-X‘(,Tyi- is parallel along a vertical
curve (X, ¥(1)) if and only if
i i
(10) ‘%:0 and %m;fﬁ i "(Q*"?) ] 0.

From the relations (9) and (10) we get the

Theorem 1. The vector field X(r):X(t)+f(r)=X"a—(;+X"—.£-i— is parallel

along a horizontal curve (x(1), y,) in M if and only if
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: .0
(i) its vertical part X=X' o7 is a constant vector, that is
Iy

}.l

d
TE(Q,)?) =0,

el s i) _ s Robond
(i) the vertical image .'J‘Y=9’}R’-5;T of its horizontal part X=X'T;; is a
constant vector, that is
%(Q_:?f] =1,
e i B ak
The vector field X =X + ,?:X'#+ X'T:; is parellel along a vertical curve
(xo, ¥(1)) in M if and only if '
S : AT NN, | % y
(1) its horizontal part X:X';;—‘_; is a4 constant vector, that is
d -
m(ff* X) =0,
= : . PR P ) _ . o R
(i1) the horizontal image QX =0} X’# of its vertical part X=X° (;—" s a

constant vector, that is
d
— (n,0X%)=0.
dr (=.QX)

The proof is an immediate consequence of the equations (9) and (10).

Now we fix an origin 06 M and we suppose that its coordinates are zero. On
the horizontal leaf U through 0 we can introduce a loop operation (non-associative
but invertible multiplication with unit) by the following schema

As

| AA—, %
Ly
b ~ p” $
0 X Y Y
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It is well known that if we consider on U the introduced loop structure, than
we can define a 3-web on the direct product UX U such that the horizontal leaves
(€4;) are Ux{x,}, x,cU, the vertical leaves (€4,) are {x,}X U, and the leaves
of 7, are

{(x, )EUXU: x-y = z,, where z,¢U is constant}.

This 3-web is isomorphic to the original one [6).

Theorem 2. let %, U—~U and R, U—-U, gcU denote the left and the
right translations on the ioop U. A hanzomaf vector field X is parallel along the
horizontal leaf UX{e} where e is the unit in U, if and only if

X (g, e) =(Z).X(e,e).
A vertical vector field X is parallel along the vertical leaf {e}X U if and only if
R(e, g) = (#,), X (e, e).

Especially if U is a Lie group then the connection induced on the horizontal leaf
Ux {e} is defined by the left invariant vector fields, and the connection induced on the
vertical leaf {e}X U is defined by the right invariant vector field on the Lie group U.

ProOF. We know by Theorem 1. that the horizontal vector field X’ h is
parallel along 4 horizontal leaf if and only if PiX1=¢" (constant). We get by (2)
Xi=Qjc"=gi fkc". where the function f*(x'.....X". y',....)") can be interpreted

as the coordinate functions of the multlplu.dtlon that 1s
G = 5 e V)

We suppose that the coordinates of the unit e U are zero. We consider the hori-
zontal leaf UX{e} through the origin O=(e.e). The parallel horizontal vector
field X has to satisfy

Xi(x, 0) = Qi(x, 0)c* = gl(x, 0)/*(x, 0)ch.
Since x-e=x we have fi(x,0)=x", fi(x.0)=08, and gi(x,0)=4di. Thus we get
Ui(x, 0) = fii(x, 0).
Since (Z,v)'=/"(x,y), the tangent map of #,: U~ U can be written in the form

d o

i ﬂ - (Zfﬁ (’ *k Uh
[-Yg)q[xﬂ;)_'?] e e 1 Y {}‘_A er ll ) Dok ®

Xoow v Fra

which proves the first assertion.
For vertical vector fields similar arguments prove the statement.



On the canonical connection of a 3-web 99

References

[11 M. A. Axupuc, O Tpu-TKaHax MHOromepubix nosepxuocrei, Tpyasl Teomerpuueckoro Ce-
muHapa, BAHUTH Mockea, 2 (1961), 7—31.

[2] M. A. Axueuc—A. M. lllenexor, O BLIMUC/ICHHH TEH3OPOB KPHUBH3IHBI M KPYYEHHS MHOrO-
MeTpoit Tpi-Tkanu, Cubupcknii Mat. XKypuan 12 (1971), 953—960.

[3] M. A. AxuBuc—A. M. lllenexos, Ocuoswl Teopu Tkaneh, Kanununcknit INocynapcTeeHHbIil
Yuupepcurter, Kanuauu (1981).

[4] W. BLascHKE—G. BoL, Geometrie der Gewebe, Springer, Berlin (1938).

[5] S.-S. Cuern, Eine Invarianientheorie der 3-Gewebe aus r-dimensionalen Mannmigfaltigkeiten in
R.. . Abhandl. Math. Semin. Hamburg. Univ., 11 (1936), 335—358.

[6] G. PIcKeRT, Projektive Ebene, Springer, Berlin—Gadttingen— Heidelberg (1955).

( Received October 27, 1983, )

PETER T. NAGY

BOLYAI INSTITUTE

ARADI VERTANUK TERE 1.
H-6720 SZEGED, HUNGARY

T*



