A note on additive bases of integers

By I. Z. RUZSA,*) (Budapest) and S. TURJANYI (Debrecen)

1. Introduction

As usual, if 4 and B are sets of integers, we write
AxB={atbh: acA, beB}

and we apply kA4 to denote A+A4A+...+A (k times). We use A(x), B(x), ... to
denote the number of elements of A4, B, ... below x, and A,(x), ... for the number
of elements of k4 below x.

A set of natural numbers is a basis of order h if every sufficiently large integer
is the sum of at most h elements of A. (From our point of view it makes no difference
whether we require all the integers to be in hA or we permit a finite number of excep-
tions.) P. ERpGs and R. L. GRAHAM (1980) conjectured that if 4 is a basis and A(x)=
=o(x), then A,(x)/A(x)—==. One of the authors disproved this (TursAnyr (1981))
by constructing for every k=4 a basis of order k such that

lim inf A,(x)/A4(x) = ==.

In section 2 we generalize this counterexample. In section 3 we present a modified
form of the Erd6s—Graham conjecture that has more chance to be true and in the
remainder of the paper we prove a partial result.

2. An example

Here we prove our

Theorem 1. For every h=3 there exists a basis A of order h such that A(x)=
=o0(x) and liminf A,_,(x)/A(x)< =.

PROOF. Let B be a basis of orde1 h satistying B(x)=o0(x"*) (cf. e.g. OSTMANN
(1969) or HALBERSTAM—ROTH (1966)). Let d, be a sufficiently quickly increasing

*) Paper finished when author was visiting the University of Ulm with a stipendium of the
A. v. Humboldt-Stiftung.
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sequence and
d:r (- du_ d; s

the number r€(0, 1) and the necessary rate of increase of d, will be specified later.
We put

A=BUUJ [d,d]

n=1
where by [a. b] now we mean the set of integers between the limits a and b. Clearly
1) A(d,) = d;.
We estimate 4,_,(d,) from above. Obviously
Ay-1(d,) = di+ Ay, (d)) = di+(A@@)) - = dy+(d,-,+B(d,)' ' = d;

assuming
d, > a3

and r=1-—1/h. Choosing r and d, according to these requirements we obtain the
desired example.

3. A more probable conjecture

Observe that in the previous example the following happened: A4(x) grew
suddenly in a short interval, but the sum of two numbers near to x being near to
2x, As(x) began to grow only much later. This motivates the

Conjecture 1. If A is a basis and A(x)=o0(x), then A,(2x)/A(x)-><. We
prove something more modest.

Theorem 2. If A is a basis and A(x)=o0(x), then A3(3x)[A(x)~ee.
We shall deduce Theorem 2 from

Theorem 3. If X is any finite set of integers, |X|=n and |3X|=sn, then for
every k we have |kX|=s"n.

In a similar way we could deduce Conjecture 1 from

Conjecture 2. If X is any finite set of integers, |X|=n and |2X|=sn, then for
every k
kX | = f(s, k)n,

with a number f(s, k) depending only on ¢ and k.
Probably Conjecture 2 and hen¢e Conjecture 1 can be deduced from Freiman’s
deep main theorem (1966) with
J(s, k) = exp cks.

We do not pursue this further since we think that the real order of f(s, k) is something
like s°*.



A note on additive bases of integers 103

4. Proof of Theorem 3

This is based on the following inequality of Ruzsa (1976): for arbitrary sets
X, Y, Z of integers we have

) IX||Y-2Z| = |X-Y||X-2Z]|.

Write
kX—IX|=qgk. )X, q3,0)=s,

and substitute Y= —(X+X). Z=kX—IX into (2). We obtain
(3) g(k,1+42) = sq(k+1,1).

Choosing k=2, /=0 we obtain

(4) q(2,2) = s
Now we prove
) q(k, 1) = 1

for all &, /. Suppose this is wrong; consider a counterexample to (5) with the minimal
k+1 If /=2, then we have by (3)

gk, 1) = sq(k+1,1-2) = s*+'.

The same argument works if k=2 (since q(k,/)=¢(/, k)). Finally if k=2 and
1<2, then (5) follows from (4).
Theorem 3 is just the case /=0 of (5).

5. Proof of Theorem 2

Consider the set X=A[1[1, x]. Clearly
|X| = A(x), |3X]|= A45(3x),

and if A is a basis of order h, then
lhXl=x—c

with a constant ¢ depending on X but independent of x. Theorem 3 yields

x—c= |hX| = M]jll |1X| = A(x)[

2 Ay(3x) ]"‘

A(x)
hence
A; (3x)

Xx—C
A0 —=( e, qu.e.d.

A(x) g3
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