Exponential polynomials and differential equations

By LASZLO SZEKELYHIDI (Debrecen)

Introduction. In [1] we introduced the Fourier transform of exponential poly-
nomials on Abelian topological groups, which is a polynomial-valued function
on the set of all exponentials. We have shown some interesting properties of this
Fourier transform and we have pointed out that it can be used to determine all
exponential polynomial solutions of some types of linear functional equations. In
this note we show that it can be used to determine all solutions of inhomogeneous
linear differential equations with constant coefficients if the right hand side is an
exponential polynomial. The interest of the method is that we obtain all solutions
without integration and it is much simpler than the classical method of ‘““variation
of the constants”. Further, the procedure obviously extends to linear systems of
ordinary differential equations, and even in the case of polynomial coefficients we
can simply determine all exponential polynomial solutions — if they exist at all.

We remark that the method extends to Cauchy-problems for linear partial
differential equations of evolution type, as the heat equation, Schrédinger-equation,
etc. In particular, we get simple explicit formulas for the solution if the initial data
are exponential polynomials (see [1]).

We need here some basic notations and results concerning exponential poly-
nomials and their Fourier transform (see [1]).

If G is a topological Abelian group, then functions of the form f= 2 p,m;
i=1

are called exponential polynomials, if the functions p; are continuous complex
polynomials and the functions m1; are eontinuous exponentials on G. If in this re-
presentation the exponentials m; are different, then the representation is unique, and
we define the Fourier transform of f by denoting f(m) the polynomial coefficient
of the exponential m in the above representation. Hence, f is a polynomial-valued
function defined on the set of all exponentials and having the following properties:

() ()" (m) = p-f(m);
(ii) ()" (m) = m()[f (m)),;
(iii) f—f is linear.

Here £ is an exponential polynomial, p is a polynomial, m is an exponential, and
fy denotes the translate of f by y.



106 Laszlo Székelyhidi

In the case G=R all exponentials have the form m(x)=e** (xéR) where
J is a complex number, and hence f(m) is denoted by f(2). In this case one more
important property concerning differentiation is the following:

(iv) (P(D)f) () = P(D+2)f

where P is a complex polynomial, and D is the operator of differentiation.
All these properties are introduced and proved in [1].

Linear differential equations. We consider the inhomogeneous linear differential
equation

(1 P(D)y=f

where P is a complex polynomial of degree n and f'is an exponential polynomial.
We show, that all solutions of this equation are exponential polynomials and we
show how to compute them without integration.

It is enough to show that equation (1) has a solution which is an exponential
polynomial, because all solutions of the homogeneous equation are exponential
polynomials.

Suppose, that y is an exponential polynomial, which is a solution of (1). Then
by Fourier transformation we have

(2 P(D+A) (2 =f (2)

for all A¢C. Here §(4), f(4) are polynomials and f(41)=0 with the exception
of a finite set. Hence the problem of solving (1) is reduced to the problem of finding
all polynomial solutions ¢ of an equation of the form

A3) P(D+2)g=p
where p is a given polynomial.

N
First we suppose that p(x)= > ¢,x*, c¢y#0 then (3) is equivalent to the
k=0
equation

i)l N
4 Z e Dg(x)= Jcx'.
i=0 j i=0
Suppose, that 4 is a zero of k-th order of P (0=k=n), that is PP (1)=0 (j=
=0,1,...,k—1), and P®(1)#0. Then we put r=D*g and we obtain

n—k p(fﬂ)(l)

) Dir(x) = 5 x

j=o (J+Kk)!
It follows, that degr=N and let r(r)-—bex Substitution into (5) yields
i=0
n—k NP(.H—*)(A) [] e N .

(6) 12‘; 2 (J“Hf)' b;x Z"}qx'
Comparing the coefficients of x* we have

min (n—k, N— op(;+kl(;) (l+}]
Q) j‘z G biyy=¢ (i=0,1,..,N).
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This 1s a very simple system of linear equations for the b;s and it is easily solvable
as it has a triangular form. If n—k= N, then this system has the form:

e P""(/l)
Cy = —5 k' H
- P®(2) P&+ ()
() Et =T ‘—(m)TN'bN
ad p(k)(l) P‘*“’(}L) P“‘“”(l) l P{HN)u) ’
IR TR T R TS B R Ty L

which is obviously uniquely solvable.
If n—k=N, then we have from (7)

™ PP, b
kT
e P
Gty %’f"—) S anind F Ll A | SRR
©) + 2D Y Jon
TR . TR e L R

D i (3o

P (A) P"‘*"(}.) p(rr)(,)

Co = k! 0 (k+l)' bl+ 5 ( _k)'bn =~k

which has a single solution too.

In the case p=0 we see from (4) that ¢=0 implies P(1)=0, and hence A is
a characteristic value of (1) with multiplicity k=1. Then by (5) it follows r=0,
and hence ¢ is an arbitrary polynomial of degree at most k—1.

It is obvious, that the exponential polynomial y for which y(4)=g, where ¢
is the polynomial whose coefficients are determined by the system of equations (8)
or (9) respectively, is a solution of (1). Hence we have proved the following theorem:

Theorem. et f: R—C be an exponential polynomial. Then all solutions of (1)
are exponential polynomials. Further, if y is a solution, then for any A€C which is
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a zero of k-th order of P, the cofficients b; of the polynomraf D*j(2) satisfy the
system of equations (8) or (9) respectively, uﬁere the ¢;’s are the coefficients of f(1).

Summarizing the results we can solve (1) as follows. First:we determine the

zeros of P with their multiplicities. Suppose that the s Kport of f is the finite set

, 1. Then we determine the value of k for which PY(1)=0 (j=0,1,....k—1)

cmd P“"().i);é{) and we solve the system of equations (8) or (9), respectwely with

A=2;. The constants ¢; (j=0,1, ..., N) are the coefficients of f(%). From the

solution we have the polynomial q‘ y() ;). Then the general solution of (1) is the
following:

5 I
y@ = 2 p)er+ 2 q (x)e*>

where py, ..., u, are the zeros of P with multiplicities ny, ..., n, (ny+... +n,=n),
and p; is an arbitrary polynomial of degree at most n;—1 (j=1, ..., s).
We see that the same method can be applied to determine all exponential solu-
tions of an inhomogeneous linear differential equation with polynomlal coefficients.
Now we present two simple examples.

Example 1. We solve the equation
y'—y=x2—xcosx+1.

The characteristic polynomial is P(1)=4*—1, the characteristic values are u,=1,

ps=—1. By Fourier transformation we have
X2 A=
—% if A=i
e . g .- :j 3 )
q"+2.q9'+(2*—1)q Y. ¥ it i1=al¢
2
. A=
0 otherwise.

Here we used the notation g=y(4). For A=1 we have from (9)

l = Zbg
0 = 2b,+2b,
0 — 2bo+b1
and it means that b,= %, by== -—T,l?'-, b°=%. Hence

yx) = —x3—ix2+ ; x+c.

Similarly, for Z=i we have from (8)
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0 =—2by+2ib,.
We obtain
a g o i
PO =Fx+4.
In the case A= —i we have similarly
na 1 i
F(=i(x) = r Al &

Now let 2=0, then y(0)(x)=—1. Finally, if 21, A= +i, A#0, then p(i)=0
implies A=—1 and y(4)(x)=d, a constant.
Thus the general solution of the equation is

s - 1 | 2d=: ) TNy
y(x) = ce*+de +(€x"—zx +Tx]rr +?xcosx~3sm.\—— b

Example 2. Determine all exponential polynomial solutions of the equation
(x2=1)y"—Cx+1D)y'—(x2=x)y=0.
By Fourier transformation we have
(x2—=1)¢"+(2x*—3x=24—1) ¢’ +(x2(A2—1)—x(3A—1)—412—2)g =0

where ¢=p(4). From this equation by comparing the leading coefficients we
have that ¢=0 implies A*=1. If A=1, then

(2=1)g"+@2x*~3x—3)¢'~(2x+2)¢ = 0

and it follows, that ¢ =0 implies deg ¢=1, which is a contradiction. Hence y(1)=0-
If A=-—1, then
(x*—1)g"+(—2x*-3x+1)g"+4xg = 0

and it follows, that ¢=0 implies deg g=2. Substituting ¢(x)=x*+ax+b into
the equation we have a=2, b=1, and hence ¢(x)=(x+1)°. Hence an exponential
polvnomial solution of the equation is

y(x) = (x+1)*e ™

Using this solution the equation can be reduced to a linear equation of first order by
a standard method.

Finally, we remark that the same method can be used in the case of systems
of linear differential equations with polynomial coefficients.
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