Hypoelliptic convolution equations in the space »#’{M )}

By S. PILIPOVIC and A. TAKACI (Novi Sad)

0. Introduction

In the papers [5] and [6] we introduced and analysed the space of distributions
H#'{M,} and gave necessary and sufficient conditions for the solvability of the
convolution equation

(1) SxU=V, Se0/(xH'{M,})

in the space #'{M,}. O (#’'{M,}) denotes the space of convolutors on #”{M,}.
For the convenience of the reader we repeat some definitions from [5] and [6]
The space # {M,} is the space of smooth functions ¢(x) on R such that for every
PEN
75(@) := sup {|@ (x)| exp (M, (x)); xER, 0 =j =n} <.

The space # {M,} equipped with the sequence of norms becomes a Fréchet space.
The dual of # {M,}, denoted by #’{M,}, can be regarded as a subspace of Z,
the space of finite-order distributions. The space O.(#’{M,}) is the space of con-
volutors on #’{M,}. A distribution S is in O;(#"{M,}) iff for every @€ {M,}
S ¥ @ is again in )f’{ »}; one proves then that this lmplleq that for every Tc #”’ {M }
Sk TeH"{M,).

In this paper we shall give necessary and sufficient conditions for the hypoellip-
ticity of (1) and of the convolutor S. These conditions will be given on the Fourier
transform of S, which by [6] is an entire analytic function.

Throughout the paper we suppose that a sequence of even, convex continuously
differentiable functions {M,(x)} is given such that, for every peN, the function
M, (x) is increasing for x=0; M,(0)=0, :J_'i_r_ll_ M, (x)/|x|=2=. We assume that
the following condition is satisfied:

(A) For every pEN there exist p’éN and X,, p"=X,>p, so that M,(px)=
=M, (x) for |\|__

it was shown in [5] that this condition implies the condition (N) ([1], p. ll!).
in general for a greater p’¢N. We denote by r(p) the smallest natural number p’

Mathematical subject Classifications (1980) AMS (MOS) 46 FXX.



112 S. Pilipovic¢ and A. Takaci

for which the inequalities in (A) hold, and the function exp(M,(x)—M,(x)) is
summable on the set R.

It is important to note that we do not assume the smoothness of the functions
M,(x), peN. However, since smoothness is necessary in Section 5., we have to
define smooth functions which behave at infinity as (for instance) M ,(x) (see Sec-
tion 4.).

We are now ready to define the space &#’{M,}.

1. The Space &'{M,}

Definition 1. & .#'{M,} is the space of smooth functions U(x) defined on R
which satisfy the inequalities

(2) U (x)| = C;-exp(M,,(x), i=0,1,2,...
for some C;=0 and p,¢éN (which depends only on U(x)).

The space &’ {M,} can be obtained as the dual space of the space of con-
volutors @7 (A’ {M,}), but this is not essential for us. Rather, let us return to the

convolution equation (1). If ScO.(#'{M,}) and Uc&EH’{M,}. then the following
Lemma shows that V:=S8+%U must be in §#'{M,}.

Lemma 1. Let ScO(#'{M,})) and UcéEAH'{M,}). Then V:=S«U is in
EX’ {M,).

PrOOF. Let us suppose that UY(x), j=0,1,2, ..., satisfy (2), and let us put
pl::r(r(pa}). By Theorem 3 from [5] for given p,€N there exists méN, and a
continuous function F(x) with the property |F(x)|=C exp(— M, (x)) for some
C=0, such that S=D"F. (D denotes the distributional derivative.) Hence

(S* )P (x)] =| i{ F() U (x—y)dy| =

= fCexp (=M, (»)C,sjexp(M, (x—y))dy =
R

= [Cfexp(—M,,(x—y)+M, () dy.
R

From the inequality
M, (¥) = M, ,,(¥/2)+ K = M,,,(x)+M,,,(x—»)+K
for x,y¢R and some K=K(p,)=0 we obtain at last
(S*U)YP)| = Cf exp(Mypy(x). O

The converse statement is not true in general; if, however, every solution of (1) is
in &4’ {M,} when V is, then the equation (1) and the convolutor § are called hypo-
elliptic in .#” {M,}.

We shall introduce two new conditions for the functions M (x), p€N: in the
following, we suppose that they are satisfied:
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(B) For every pair (p,q)¢N? there exist k€N and X(p,q)=0 such that
M,(gx) = M,(kx)/k for |x| = X(p, q).

(Observe that this condition is not satisfied for an arbitrary convex function
which increases in infinity faster than any linear function. On the other hand, every
function from the sequence {M,(x)}. where M,(x):=p-|x|°, s=1 fixed natural
number, satisfies this condition. We know that this sequence leads to the space of
exponential distributions . If M, (x):=M (px). where M(x) is a convex function
which grows faster than any linear function when |x|—< ([8]. [3]) then chis condi-
tion becomes:

For ¢g¢N there exist k€N and X(¢)=0 such that

(3) M(gx) = M(kx)[k for x = X(q).)

The other condition is:
(C) For every pEN there exist p’¢N, k€N and K,=0 such that

M,(x+y) = kM, (x)+ M, (y)+K, for x, ycR.

(This condition is a “‘new” one only for 0= |y|= x|, otherwise it follows from
(A).)
The main result of this paper is the following

Theorem. Suppose ScO(H'{M,}) and let S(w), w=u+iveC be its Fourier
transform. The following conditions are equivalent:

(H,) S is hypoelliptic in #'{M,}:

(H,) a) For each peN there exist B, M =0 such that

IS(W)| = |u|"® for |u|= M;

(b) lim (ﬂ,(r)/log \w|)=oo when |w o= statying on the surface S(w)=0:
(H;) For every peN and d=0 there exists a constant B=0 so that for every
méeN  there exists C,, =0 with the property

1/Sw)| = IwiB exp (d - 1, (v))
for L
|Mp(v)| =m log jn" and “_‘lf = Cm-

ﬁ?p(r] denotes the function dual in the sense of Young to the function M ,(x)
([2] p. 18).
2. The Necessity of (H,)

The implication (H,)=(H,a) can be proved in the same way as in [7], because
the proof in [7] runs for the space of tempered distributions &, and obviously &%’
c#’{M,}. In order to prove (H,)=>(H;b) we follow the lines of the proof of The-
orem 7 in [7], though in our case this proof needs certain modifications. The following
statement implies at once the necessity of the condition (H,b).

Proposition 1. /f each continuous solution of the homogenous equation
(4) Sall =0

8
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which satisfies the estimate
(5) U(x) = O (exp (M,(x))) when |x| -~ o

for some pcN, is in fact a continuously differentiable function in some neighbourhood
of zero, then the condition (H;b) holds.

ProoF. Let us fix p and let Z={x¢R: x/=1} be the mentioned neighbour-
hood of zero. Let H, denote the space of continuous solutions of (4) which satisfy
(5) and let H,=H, ﬂC‘(.‘Z‘], where C'(%) denotes the space of continuously
differentiable functlons on the interval Z. The spaces H, and H}, endowed with the

norms
U] ,:= sup {|{U(x)| exp (— M,(x)); xR} and

1UI7 = sup {{U’(x)|; xe£}+||U],

respectively are Banach spaces. Since these spaces have the same elements, from the
closed graph theorem it follows that

(6) 1U|l, = C,IU|l, for every U¢H, and some C, = 1.

If w=wu+iv is such that S(w)=0, then Up(x):=exp (iwx)eH, and |Uyll,=
=sup {exp (—vx—M,(x)): xé R}=exp (M,(r)). The relation (6) lmplleb now

(C,— ) exp(M,(v)) = |w| or
(7) M,(v)/log |w|=1 for sufficiently large |w.

Let us take p=p’=p” such that M, (p’x)=M,(x) for sufficiently large |x|
(condition (A) implies the existence of such natural numbers p” and p” for given
peN). So, we obtain
(8) M,(x/p") = M. (x) or M,(x) =M, (p'x)
for sufficiently large |x|. From (7) (p replaced with p”) and (8) we get

M »(0)/log lw| = M (v)f’ﬂ' ()= M --(p'v)/ﬂ () = p’

for sufficiently large |w/ and S(w)=0. This implies lim M,(v)/log |w|= when
|w| <= on the surface S(w)=0. 0

3. The Implication (H,) = (H,)

In order to prove this implication, we shall state two Lemmas. Let {d,} be a
sequence of positive numbers which monotonically tends to zero. Let us denote by
{m,(x)} the sequence of continuous functions such that m,(x):=M,(x) for x=
=d,=0 and m,(x):=M,(d,)x[d, for O=x=d,. By {M,(x)}] we denote the
corresponding sequence of convex functions, i.e.

| x|

M,(x) = f m,(ndt, x€R, p=1,2,...

0
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It is clear that the functions M,(x) (resp. M,(x)) and M, (x) (resp. M,(x)) have
the same behaviour in infinity. Obviously, condition (A) holds for the sequence
{M,(x)} provided that it holds for {M,(x)}. The following lemma is obvious, so we
omit the proof.

Lemma 2. )]_i—l;l'1+ (M, (xy)/M,(y))=x* for every x€R.

The next lemma is a version of Lemma 1 from [4].

Lemma 3. For given A, B.b=0 and peN there exists a positive constant N
such that if U=U(x,y) is a harmonic function for x*+y*<T* which satisfies the
inequalities

&) U(x,00=0, Ux,y)=—aM,(y)—BM,(R)
for x*+y*<=T? then
(10) U(x, y) = aM,(y)+(B+b) M,(R)

for x*+y*<R* provided that 0<=a<=A, 0<=R<T]/N.

ProOF. If we suppose that this lemma were false, then in the same way as in
[4] we can show that there exist sequences {a,}, {T,} and {R,} such that 0=a,< A4,
T,=n+R, and a sequence of harmonic functions {U,(x. y)} such that

U,(x,0 =0, U,(x,y = —a,,ﬂ,(}’)—ﬂﬂ,,(}?,) for x*4+)y' < T,

and U,(x,,y,)=a, M,(y,)+(B+b) -b_?p(R,,} for some (x,,», which -catisfies
x3+yi=R3.
Let us put

Vn(“-- .l'} = Un(Ru-r\ Rn.")/ﬂp(RnL .\':, — '\.I'I[Rl‘! .vl: - .r!ua"‘Rn .

We obtain '

V,(x,0) =0, V,(x,») =—a,M,(R,y)/M,(R,)—B
for x,2+y,2>=n* and

V(s ¥2) = a, M,(R, y,)/ M1, (R,) +(B+b)
for x>+ y.2<l.
As in [4], using Lemma 2, we can show that there exists a harmonic function

V(x, y) and real numbers x,, y, and a, such that

(11) V(x,0) =0, V(x, ») =—aoy¥2—B, V(xy, yo) = aoys/2+(B+b).
From Harnack’s inequality it follows that V(x, ) is of the form V(x,y)=cv+d;
(11) implies d=0. Putting y:= —y, in the second inequality in (11) we obtain
—cyo+d=ayyd/z— B, and this with the last inequality in (11) vields 2d=b=0,
contradicting d=0. [J

The proof of the implication (H;)=(H,)

Let p,méN and b=0 be given. Using the method from [6] one can prove
the following

8
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Proposition 2. For given pcN and d=0 there exists a positive constant n with
the property that the Fourier transform S(w) of the comvolutor S satisfies the ine-
quality
(12) IS(w)| = |ul"exp (a’ﬂ,(u))

Jor sufficiently large |w).

Let w=u+iv be a complex number such that Oéﬂp(r)ﬁm -log lw| and let

L. be a positive constant which we fix later. The function

F(2):= S'(u+ z|—:|]. z=x+iyeC

is an entire analytic function of the complex variable z. Condition (H,) implies

(13) |Fo(x) = 2ul)~® for M,(x) < Llog |u|
and using (12)
(14) |F\(2)] = (2|u))"exp (dM, ()

for sufficiently large |w| and M,(|z|)=L -log |ul.
Let us analyse the function

(Un(2):=—log (2|u))® |F,,(2)]).

It is harmonic in z, if ﬂ,(lz|)-=:1. log lul, for sufficiently large |w|. Let us put
A:=1+d, a:=d, B:=(B+n+1)/(m+1), b:=1/(m+1), R:=M;"((m+1)-log |u),
where **— 17 stands for the inverse function. Relations (13) and (14) show that
we can apply Lemma 3 for these 4, B, b and the given péN. Now, Lemma 3 implies
the existence of a natural number N, so that for |z|=M'(L-log lu/)/N we have

(15) U,(2) = dﬂ,{)‘)—i—(ﬁ%— n+2)log lul.
The moment has come to use condition (B). For a given peN and given ¢:=N
(N from Lemma 3) there exists k€N such that (B) holds for sufficiently large values
of the variable. Putting L:=k(m+1) we see that R-N<=T:=k(m+1)-log |ul.
The monotonicity of M, (v) implies |v|<R, since M, (v)<ni-log|w|=(m+1)x
% log /=M ,(R). So, we can put z:=i || in (15) which gives at last
(1/|S(u+iv))) = |ul*B+**+3exp (d M, (v))

for sufficiently large |w|, and this is the inequality in condition (Hj) with ﬂ, instead
of M,. But M,(v)=M,(v)+C,, for sufficiently large |v|, and this proves (H,)=>(Hj).

4. The functions N,(x) and Q,(x). peN
In order to prove the sufficiency of condition (H;), we shall introduce some

sequences of smooth functions.
Let @: R—~R be a smooth nonnegative function which satisfies the following

conditions: supp wc[0, 1] and fm(.\'] dx=1. For x=1 and peN we define
R

N,(x):= [ M, (Ne(x—1)dr.
R
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By N,(x) we denote the smooth even function on R which equals N,(x) for x=1,
and is increasing for x=0. The next Lemma shows that the sequences {N,(x)}
and {M,(x)}are equivalent in the sense that for every function from the first sequence
there exists a greater one (at least, for |x| sufficiently large) from the second and

vice versa.
Now, we write down the following condition, which is by Lemma 4 equivalent

to (H,) from the Theorem. F
(H3) Forevery peN and d=0 there exists a constant B=0 so that for every

méeN there exists C,,=0 such that
11/S(w)| = |w|Bexp(dN,(v)) for N,(v) = mlog|w]
and |w|=C,,.

Remark. One checks easily that this condition implies that there exists an
L,>B which fits for any d;, 0<d,<d, (B and d as in (H3)), though in general for
greater C,,.

Lemma 4. Let peN, p=r(2) be given. Then:

a) N,(x)=M,(x) for |x|=1;

b) There exists PEN. 1=p'<p such that M,(x)=N,(x)+K,, for each
xR and some K,, =0.

c) The condition (H3) is equivalent to the condition (Hy).

ProOF. a) Let x=1. Then
1 1
N,(x) = .[ M,(x—Do@di= [ M,(x—Do)d = M,(x) [ o()dt = M,(x).
0 0

b) Let p” be the largest natural number such that r(p’)=p. Let us show first
(16) M,(x) = M, (x—1)

for sufficiently large |x|. y

In fact, condition (A) implies M, (p’x)=M,(x), hence M,-(x/p’)}:'ﬂ,(x)
for sufficiently large |x|. Since M, (x) increases with |x|, the relation (16) follows.
This implies

1
M,(x) = M, (x—1) f o()dt = '[ﬂp(x—r)w(l) dt = N,.(x)
0
for sufficiently large |x|, and since H,,(.r) and N,(x) are even b) follows.

¢) Let us suppose that (H;) holds. From part b) it follows that for every pg
there exists p,=p, such that for sufficiently large |x| the inequality:

M, (x) < N, (x) holds. If N, (v) <= mlog|w| and
lwl=C,, then ﬂ,a(v)-zm log |w|. This implies that for p=p, and sufficiently

large |w| (H3) holds, and hence (H3) holds for p=p;. The opposite implication
follows in a similar way from part a) of the Lemma. 0O
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We prove now an important property of the functions N,(x), namely: for
given (p, g)€N? there exists k=k(p, g)=q such that
(17) N,(gx) = kN,(x) for |x| sufficiently large.

In fact, from (B) follows that for given (p, ¢,)€N? there exists k=k(p, ¢1)=q,.,
such that M,(¢q,y)=k -M,(y) for |y| sufficiently large. We choose ¢,=¢ such
that ¢,|y|=qly|+g—1 (for large |y|), so M, (qv+q—1)=k -M,(y). This implies

M,(gy+qt—1)=k-M,(y) for t€[0,1] and |y| large.
Putting y=x—1 in the last inequality, multiplying it with w(7) and integrating by
t on [0, 1] we obtain (17).

Next, we shall need the sequence of smooth functions on R, {Q,(x)},cn
which are defined in the following way:

1

(18) 0,(0) = [ Ny'(x-no()dr for x=1;

[}

(N, (x) is the inverse function of N,(x), x=0). We define Q,(x) on (—==, 1] so
that each Q,(x) becomes smooth and even on R and increasing on (0, <=). We need
later the obvious inequality

(19) Q,(x) =N, '(x), |x|=1, peN.

5. The (p, q)-parametrix for S

Definition 2. Let Sc@.(#”{M,}) and p,qcN. The distribution Pe#’"{M,}
is called the (p, ¢) — parametrix for § if it satisfies the following two conditions:
(P;) There exists n€N and a continuous function F(x) on R with the property

(200 F(x) = O(exp(—N,(x))) when |x| - = such that P(x)= D"F(x),

where N,(x) is an even, smooth nonnegative function such that for x=1

1 N,(x) = f M, (1) o(x—1)dr
R
and the sequence {N,(x)} is monotonically increasing (see [5]).
(Py) If W(x):=0(x)—(S* P)(x), then WeCYR) and for every j,0=j=gq,
W (x) = O(exp(—N,(x))) when |x]| — o,
We prove now

Proposition 3. Let ScO.(H'{M,)) and (p.q)eN? be given. There exists a
(p, q) — parametrix P for S if S(w) satisfies the condition (Hy3).

PRrOOF. In the proof of this proposition we use the idea of an analogous state-
ment from [7]. However, we give the complete proof since many details on the func-
tions M ,(x) occur.
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Let b be an even number such that
(22) b = (B+1)/2;

B is the constant from (H;) for given p¢N and d=0. By the assumption. for given
méN (which we fix later), there exists C,,=0 such that the function
1 exp (ixw)

(23) F(x,w):= EW, w = u+iveC,

is analytic for N, (v)=m-log w and w/=C,=1. Condition (22) implies that
the function F(x, w) is integrable for each x¢R on the set /,:={ucR: u/=C,)}.
If we put

h(x) = f F(x,u)du and g(x):= D*h(x) then

e o )
Skxg= 0——2;_! exp (ixu) du.

Let a=0, pcN and ¢€N be given: take ¢=2¢ and the constant k=2¢
from (17) such that

(24) ¢ <k < ma/2

(as wee see later, this can be achieved by letting m increase. Let s(7) be an odd smooth
function on R such that s(/)=C,, for 0<=r=C,, and s(1)=C,, -exp (aN,(1)) for
{t|=2C,,. We suppose also that s(7) increases for t=C,,. With s*(7) we denote
the increasing smooth function on R, which equals s(7) for |¢t|=C,,, with the pro-
perty s*@(0)=0 for j=0, 1,2, ...,. Letz(7) be an even smooth function on R such
that z(£)=0 for [t|=C,, and z()=c -Q,(N,(1) for |t|=2C,, (see (18) and (21)):
we suppose z(f) to be increasing for ¢=C,. From (17), (19) and (24) follows that

(25) N,(2z(1) = mlog |s(n)| for [t]=C

We take the curve L(x)=w(r):=s(0)+i-z(1)-sgnx, tel,. Condition (24)
shows that the function /(x) can be written as

h(x) = fF(x, wdu = fF(x, w(n)w'(r)dt

L(x)
provided that 2b= B+dm+2.
Let us put
exp (ixw)dw
26 h = — —_——, = Cp»
26) =gy [ TG s =
@ =g fEEENM g

21[ L S(w)w

where L,(x) and L,(x) are parts of the curve L(x) for the values of the parameter
t such that |t|=|x|, respectively C,=t|=|x|.
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We put now
C

1
e (S D2 =5 :
(28) W)= (5% D h) ()45 j exp (ixu) du
and finally P(x):=D*h,(x). "
The distribution P is the (p, ¢)-parametrix for S, and W (x) from (28) is just the
function from the condition (P,). In fact, from the following two lemmas conditions
(Py) and (Py) follow.

Lemma 5. The function hy(x) from (26) is O(exp(—c -N,(x))) when |x|-»=e.

Proor. We write h,(x) as

1 exp (ixw(0))w’ (1) dt
hy(x) = —
(x) 2n {e: [e]=|x(} S(w(")) w”(t)
First of all let us prove
(29) lexp (ixw (1)) = Kyexp (—cN,(x))

for sufficiently large |x|, |t|=|x|and some K,=0. Since N, (x—1)=0Q,(x)=N,(x)

and (see [3]) Egi—l(;)éﬂ;‘(x) we have by Lemma 4 and [5]
- A= o = -1 o — ]xl_l = ]1x!—]
Qp(x):&rp 1(|x[ l) - Hp (Fx‘ IJ:NP_“(le—I) = N’.l(x)
This implies
- Ny(x)—1 N,(x)—1 ;
0,(N,0) = 0, (M) = Ty = 2 1=l
hence

c|x|Q,(N,(1) = eN,(x)—c
and so (29) follows.
Let us observe now that
(30) | (X)I=K] 0, (x)=K] +|x],
(30”) IN§?(x)|=K} +N,(x) and (see [5]),

(30”) N,(x)=K7 -exp (aN,(x)), |x| sufficiently large, for some Kj, Kj and K”
(which depend also on peN). To simplify the notations, we shall use the same
letter K; for these constants; moreover, when some constant depends only on jEN,
and a fixed peN we denote it also by K;.

Let us estimate |z”(7)|. For j=1 the relations (30) imply

(31) 12’ (1)] = Ky exp (2ad N, (1)

and by induction
|Z(D(f)l = KJ. exp (a(j-l- 1) dN,.(f)), JE€N,.

Now, it is easy to prove
(32) WO (1) = K;exp(a(1+(j+1)d)N, (1)
for [7] sufficiently large and some K;=0, jEN,.
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At last, we have
(33) lw(t)] = Kexp(aN, (1)) for |¢| sufficiently large

and some K=0.
Combining (Hj), (29), (32) (for j=1) and (33) we obtain

lhy(x)| = K exp (—cN,,(x))l[exp [[aB+

d‘;_’" +a(l -+-2a‘)—2ab] N,,(:)] dt =

= O (exp(—cN,(x))) when |x|— <o
provided that

(34) b= 1+[B+%’t’—+1+2d]/2,

where b is an even natural number. So we obtain Lemma 5. 0O

Lemma 6. For given (p,q)eN? there exist sufficiently small constants d,a
and sufficiently large constants m, ¢ such that

WO (x) = O(exp(—N,(x)) when |x] + =
for every j,0=j=q. (W(x) from (28)).

Proor. It is clear that the function h,(x) defined by (27) is smooth and equals
zero for |x|=C,,. We suppose that x=0 (the case x<0 is analogous).
Let us prove now

(35) i) (x)| = K;exp (aky N,(x))
for some k,=k,(j,d)=1 (one can compute it exactly) and some K;. In [act we have

exp (iw () x)w (1)

35 2h (x) =
al ; (x {t: C,=|t]=x) S(W(-'))W(I)zb

dt+ R;(x)
where
Ry(x)=0, Ry(x)=(y,(x)exp (ixw(x))—y; (—x) exp (ixw(—x))w'(x), R 1(x)=
= Rj(x)+ (31 (x exp (ixw(x)) (iw(x))!** =y, (—x) exp (ixw(—x)) (iw(—x)) )W (x),
»(x)=ys(w(x))= l/(f(w(x))w(x)”), j=0,1; ....

Our next goal is to prove that the function y,(w)=1/(S(w) -w) is bounded
together with its derivatives on the set Q,={w=u+i€C, N,(2v)=m -log |u|,
lw|=T=C,} for sufficiently large 7. In order to prove this, we shall use a version
of Theorem 1.2.4 from [9], p. 17; also, we use the notations from [9].

First of all, the integral
S nwldwndw
Q2

converges in view of the condition 2b=B+dm+2, where Q= {w=u+iveC,
N,(v)=m -log |u, |w|=C,} (see (25)).

Let Yy (w)eCy(C) be such that Y (w)=1 on B(0,1) and ¢ (w)=0 for w¢
¢ B(0, 2), where B(w,, R)={weC, |[w—wo|=R} wcC, R=>0.
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If weQ,. then for T sufficiently large there exists wo€ Q such that weB(wy, 1)
and B(w,, 2)c Q. The function y,(w) isanalyticon ©,, so % (W) Y (w—wp))=

=y(w) 3% Y (w—wy), we,. By the Cauchy formula we get
YO ¥ (E—wo)

1
(WY (w—wp) = 5— di+
: v 2ai [{::|c-w.,i=s: b
';%'II’G"WU) C
+ () —————d{Adl].
B(Wfo.-l;) : {—w ]

Observing that the first integral is zero, differentiating this equality j — times and

using the following facts: —;%;b({—wo] is zero on B(wy, 1) and sup {1/|{—w|;

weB(w,, 1), {€supp ?;% Y ({—wg)}===, we get the following inequality:
W = K] [[1n©ldAd = K;, j=0,1,...
0
for any we @, and some K;=0. Observe that this K; does not depend on w or w,.
In view of (32) this implies that the last integral in (35”) can be estimated with
2x - K;exp (aki N,(x)) = K;exp (a(k;+d) N,(x))

and the remainders R;(x) with K; -(exp (aky -N,(x)) for some k;,ky=1 which
depend on jEN, and d=0 (|x| sufficiently large). So we obtain (35) for k,=
=max (ki+d, k7).

Let us observe that Lemma 6. implicitely states that W (x) is in fact a function
from the class C?; from the smoothness of hy(x) and (35) this follows at once. We
have

W (x) = (S*hU*?)(x)+ [L j’ exp (ixu) du)m.
s 2n _¢ .

Since S is a convolutor on #'{M,}, for given p, (which we fix later) there
exists a continuous bounded function on R and a non-negative integer »n such that
S=D"(G(x)exp (— N,,(x))). This implies

WO (x) =
(36)

= [ G exp(— N, »)( r{ F(x—y, w(0)w’ (1) di)li+*+" dy) +
—e {r: C=lt|=]|x—y)

-
+% [—E,Ij exp (iux) du]i")

(F(x, w) from (23) and w(t)=s(1)+iz (1) -sgn(x—y)).
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We suppose that x=C,,, write the inner integral in (36) as
{t:C,=[t|=]|x~yl} e a=ltizx {nx=h]six—y|)

and estimate the obtained integrals separately. We shall show that they are both
O(exp (—N,(x))) when x-—<o. The first integral can be written as

(37) f G(y)exp(— Nm(y))[ f (F(x—y, w(t))w’(!)d!);“z"*’”) dy=
-, {r:C,,=|tl=x)
LT exp (i (x—p) w(D)) (= iw (1)) *"
= -4 + G (-— NP: )
-'-[ ;f !( W i )) ({ttfméitléx} S(W(’))

where in the second integral w(7)=s(1)—iz(¢), and in the others w(7)=s(1)+iz(1).)
Now the first integral and the third integral with the “*plus™ sign in (37) give

ir] dy

(—1yi+n 28 2n exp (ixw (1)) wit"(H)w’ (1) dt
2n {e:C,,=|t|=x) g(“(r))
)
v 4 f G(y)exp(— Nh(}))exp( ym(r))d}_[2 fexp(:xw)dw] ?

Ly(x)
Take now p,=r(p) such that the integral f exp (=N, (»)+¢|y|Q,(N,(»)dy

converges and (for a given k,) p.=r(p;) such that N, (y)= ())-t—kz.N (»),
yER. (p and p» with such a property exist by (A)). Then the fourth mtcgral in (3?)
(with the *“—" sign) can be estimated with

const 2x [w/*# ()| [w’ (x)| [y2(w ()| exp (— ka N, () X
X [ exp(=N,,(3)+cyQ,(N,(»)) dy = O(exp (kya— ko) N, (x)))

when x-—co, where k;=0 can be computed exactly; it depends on j, n, b and d.
We take ky=kz+1=kya+1 if O<=a<]1.

At last, we can estimate the second integral in (37) as O(exp (kza—k3)N,(x)))
when x—ee, kg and k, as before.

The integral

f G(J") exXp (_ Np,(}’))( f F(x—y, w(r)w' (1) tf!);“"‘"'”)) dy

{r: x=[t|=]x—pl}
can be written as
(38)
exp (i (x—y)w(@) (—iw(n))'*"
f Hpepi-la) [:- R S(w(D)
+§;(x)
where the S; are the “‘remaindérs” (we estimate them at the end).

w’ (1) dr]dy+
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The integral in (38) we write as

oo 0 x 2x oo

(39) [=[+[+[+ [ =h+th+L+],.

—eo — oo 0 x ax

Now, if necessary, we increase the previous p, so that the inequality in the condition
(C) holds for some k=k,: this implies:

N,(x—y) = ky N, (x)+ N, (»)

for x sufficiently large and y<0. If necessary, we increase p,=r(p,) so that the
integral

[ G exp (ksaN,, (»)—N,, () dy

converges and obtain

0
L] = Kiexp(—eN,(x) [ yG(n)exp (keksaN,(x) %

xexp (ksaN,,(y)—N,,(»)dy = O(exp (ksksa—c)N,(x))) when x —oo;

here ks=(1+d)(j+2b+n)+(1+2d).
Next, since for 0<y<x we have N,(x—y)=N,(x)—N, () (for given p
there exists p,=r(p)) and if p, is so large that

[ Yl exp (N, (0) =N, (1) dy <=

we have |l,|=K, -exp ((ksa—c)N,(x)).
In a similar way we get (without condition (C)!):
Iy = O(exp ((ksa—c) N,(x)))

I, = O(exp(—cN,(x))) when x —»eo

hence the integral in (38) is O(exp (kgksa—c)N,(x))) when x—oo.
The remainders S;(x) are linear combinations of the integrals

and

J GO exp (= N,y () (7472 (e =) ((ew (x = 1))

X((iw(x—p)y)ew (x—y)exp (i(x—y)w(x—y))dy, m€N
so by the previously used inequalities we get
S;(x) = O(exp((kega—c)N,(x))) when x - e,

for some kg which depends on j, n, b and d.
Now we can write

W9 (x) = O (exp (k;a—c) N, (x))+ % ( f exp (ixw) dw]i”
L*(x)
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where L*(x) is the contour obtained by joining the segment [—-C,,C,] on the
real axis with the curve w*()=s*(0)+iz(f) for C,=|t|=x, where k,=max
(kgks, ks, kg). Let us show

(40) [ f exp (ixw)dw) D=0 [exp [k —-—=| N (x)]

L*(x)

when x--< for some kg=1 which depends on j, n, b and d.

From the Cauchy theorem it follows that we can replace L*(x) with the contour
L (x), which is the complementary contour to L*(x), i.e. its equation is w*(f)=
=s*(t)+iz(t) for o=x=<|t|. So we get that the integral in (40) is equal to

(41) f (iw)! exp (ixw) dw + S} (x)

Li(x)

1
2n
where S7 (x) is the remainder. For sufficiently large x we can estimate the last integral
with

exp [—% N, (x)] exp [—— N (r)] exp (ksaN,(n)dt

ltl=x

o [exp (—% N,(x)]] when x =, ki = ki(j, b, d)
provided thet kﬁa{%+l. The remainders Sj(x) are estimated easily as
O[cxp [[k )N (x)]] when x-o for some kJ=0. Taking ks=max (kg, k)
we obtain (40). So, for k9:=0r2?=_§¢ max (k,, kg) we get
42 WwWPx)=0 [exp [[kga —-—;—]:N',Sx)]] when x -= and 0=j = ¢q.

Take now c¢=2p+2, choose p,, ps and n as indicated before. Taking now
b=B+3 (B from (Hj3)), a so small that kga—c/2<—1, m sufficiently large that
m=2c[/a and observing that k, does not grow by dccreasmg d, take d<=2/m, (see
the Remark after condition ( 3)) we obtain the Lemma. [

As we said before, proving Lemmas 5 and 6, we finish the proof of Proposition
3. We prove in the sixth section that the existence of a (p, g)-parametrix for the con-
volutor S implies its hypoellipticity.

6. Sufficiency of (H;) for hypoellipticity

Proposition 4. Let us suppose that for given (p, ¢)¢ N* there exists a (p, ¢)-para-
metrix Pc#”{M,} for the convolutor S€@.(#{M,}). Then the equation
(N SalU=V

and S are hypoelliptic in #" {M}.
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YROOF. Let Ve&H#'{M,} be given and let us supposc that there exists a solu-
tion Ue#’{M,} of (1). We know that there exists p,€N such that

VP(x)| = C;exp(M, (x)) for every j=0,1,2,....

Theorem 1 in [5] implies the existence of numbers k€N, and p,€N and a con-
tinuous function K;(x) on R such that

U(x) = DMK, (x) and |K,(x)| = Cexp(M,,(x)).

Let j€N, be given and put p:=r(r(r(p,+ps))), q:—j+k,. For this pair (p, ¢)
we take the parametrix P for the convolutor S, so that the conditions (P,) and (P,)
from Definition 2. hold. This implies

43) U=U#0=U#(S*P+W)=Ux(S*P)+UsW =(UxS)* P+UxW >
(43) U=V*P+UxW.

The existence and the associtivity of the convolutions in (43) follows from the
assumptions on U, ¥V, P and S.

We have yet to show the smoothess of the two summands in (43"), and that
they are O(exp (M, (x))) when |x|—=<> for some p,EN, i.e.

(44) UY(x) = O (exp(M,,(x))) when |x|->-eo

and p, should not depend on jEN,.
The function ¥ # P is smooth, since

VxP)(x)=WV%D"F)x)=F"%F)(x) = ‘{‘V("’(x—y) F(y)dy

and generally
(V% P)D (x) = fV(l'+J)(x._y) F(y)dy.
R

Let us estimate this integral:

| if VoD (x—p) F(y)dy| = ¢, ; [exp(M,,(x—»))exp(— N, () dy.
R

Using the inequality

(45) M, (x =) = My () + M) (7)) = My () + Ny (0) +
+ K’ = M, (%) + Npoipy+ () + K’

for some K'=K(p,) we obtain

(46) [V ¥ PYV (x)| = cexp (M, (x)), ¢=0.

Since W is a C? function, the choice of p shows that this is true also for Ux W.
So, we have
U V)P (x) = (K, % W)+ (x)
and

U W) (x)| = C’ [ exp (M,,(»))exp (— N,(x—y))dy
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for some C’=0. Hence from a relation like (45) we obtain
(47) (U W) (x)| = C"exp (M, ,,(x)).

From (43'), (46) and (47) we see that putting py:=max (r(p,), r(py)) we get
(44). Observe that p, does not depend on j. [
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