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A regularity theorem in information theory

By ANTAL JÁRAI (Paderborn) and WOLFGANG SANDER (Braunschweig)

Abstract. We show a general regularity theorem for the functional equation of
the type

f(x) +
mX

i=1

(1− x)αigi

�
y

1− x

�
= h(y) +

mX
i=1

(1− y)αiki

�
x

1− y

�
and present the regular solution in a special case.

Introduction

In the characterization of symmetric divergences and distance mea-
sures the functional equation

f(x) +
m∑

i=1

(1− x)αigi

( y

1− x

)
= h(y) +

m∑

i=1

(1− y)αiki

( x

1− y

)
(FE)

arises in the special case m = 2, f = h, g1 = k1 and g2 = k2 (see [12] where
α2 = 1− α1 and [11]). In this case all tuples (f, h, g1, g2, k1, k2) satisfying
(FE) for x, y, x + y ∈ (0, 1) are determined in [11] under the assumption
that f , g1 and g2 : (0, 1) 7→ R are three times continuously differentiable.
One aim of this paper is to show that this result remains true if f , g1

and g2 are Lebesgue measurable or satisfy the Baire property. In a more
general setting we assume that f, h, gi, ki : (0, 1)n → R (1 ≤ i ≤ m) satisfy
(FE) for all

(x, y) ∈ D◦
n = {(u, v) : u, v, u + v ∈ (0, 1)n}.
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Here all operations on vectors like addition, multiplication and division are
done componentwise. Thus we put 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0)
and for instance

1− x = (1− x1, 1− x2, . . . , 1− xn)

for x = (x1, x2, . . . , xn) ∈ Rn. Moreover we agree on writing

xα = (x1, . . . , xn)(α1,... ,αn) = xα1
1 xα2

2 · · ·xαn
n

and
x¯ y = (x1, . . . , xn)¯ (y1, . . . , yn) = x1y1 + · · ·+ xnyn

for the usual inner product in Rn. Further we denote by

Un = {(1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
the set of the n unit vectors in Rn with respect to the canonical basis in
Rn and we put log x = (log x1, . . . , log xn).

We’ll prove that the assumption that f , gi or h, ki are Lebesgue-
measurable or Baire-functions satisfying (FE) implies that f , h, gi, ki are
infinitely often differentiable (1 ≤ i ≤ m). The idea of the proof is to show
that — after some transformations — rather general regularity theorems
of [4] and [5] work also in the case of the functional equation (FE). If
m > 1 then the regular solutions of (FE) are known only if m = 2, n = 1
(and f = h, g1 = k1, g2 = h2; see [11]) but the general solution of (FE) is
unknown. If m = 1 then (FE) goes over into the so-called generalized fun-
damental equation of information (with four unknown functions), which
has many applications (see [6] and [10]). The general solution of (FE) for
m = 1 is known [3] but the proof is rather long and is dependent upon
many additional results. Moreover, we cannot always easily deduce from
the representation of the general solution of (FE) (for m = 1) the regular
ones (see [10], p. 162). Therefore we give a brief direct proof for the form
of topologically and measure theoretically characterized solutions of (FE)
in the case m = 1 using functional equations and differential equations.
Our theorem generalizes the results in [6] and [9] where the distributional
solutions of the generalized entropy equation, which is equivalent to the
generalized fundamental equation of information (see [6], p. 144), are de-
termined.

2. A regularity theorem

Before we prove a general regularity theorem for functional equation
(FE) we present two results because we think they are worth while to be
included for handy reference in the future. We remark that measurability
always means Lebesgue-measurability.
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Lemma 2.1. Let T , U be open subsets of Rp and Rq, respectively, let
fi, hi : U → R, let gi, ki : T → R and let F : T × U → R 1 ≤ i ≤ m.

(a) If f1, . . . , fm are linearly independent on U and satisfy

(2.1)
m∑

j=1

fj(x)gj(t) = F (t, x)

for (t, x) ∈ T × U then there exists x1, . . . , xm ∈ U and real-valued func-
tions ai,j , 1 ≤ i, j ≤ m depending upon fj(xi) such that

(2.2) gj(t) =
m∑

i=1

ai,jF (t, xi), 1 ≤ j ≤ m

for all t ∈ T . Moreover, if F is measurable (or has the Baire property) in
the first variable then g1, . . . , gm are also measurable (or have the Baire
property).

(b) If f1, . . . , fm and g1, . . . , gm are linearly independent on U and
T , respectively, and if they satisfy (2.1) for all (t, x) ∈ T × U where F is
measurable (or has the Baire property) in both variables then f1, . . . , fm

and g1, . . . , gm are also measurable (or have the Baire property).

(c) If f1, . . . , fm and k1, . . . , km are linearly independent on U and
T , respectively, and if they satisfy

(2.3)
m∑

j=1

fj(x)gj(t) =
m∑

i=1

hi(x)ki(t)

for (t, x) ∈ T × U then there exists constants bi,j ∈ R (1 ≤ i, j ≤ m) such
that

(2.4) gj(t) =
m∑

i=1

bi,jki(t), 1 ≤ j ≤ m

and

(2.5) hi(x) =
m∑

j=1

bi,jfj(x), 1 ≤ i ≤ m

for all (t, x) ∈ T × U . Moreover, if fi, ki, 1 ≤ i ≤ m are measurable (or
have the Baire property) then gi, hi, 1 ≤ i ≤ m are also measurable (or
have the Baire property).

Proof. (a) By the linear independence of f1, . . . , fm there exists
elements x1, . . . , xm ∈ U such that det M 6= 0 where the matrix M is
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given by M = fj(xi)m
i,j=1 ([1], p. 229). Putting x = xi, 1 ≤ i ≤ m into

(2.1) we get a linear system for g1, . . . , gm with coefficient matrix M . By
Cramer’s rule we obtain

gj(t) =
m∑

i=1

ai,jF (t, xi)

where the functions ai,j , 1 ≤ i, j ≤ m are the cofactors of fj(xi) divided by
detM . The measurability statement in (a) follows from the representation
(2.2).

(b) Statement (b) follows from (a) and replacement x↔ t and fj ↔ gj .
(c) Using part (a) with F (t, x) =

∑m
i=1 hi(x)ki(t) we get from (2.2)

for 1 ≤ j ≤ m

gj(t) =
m∑

l=1

( m∑

i=1

hl(xi)ai,j

)
kl(t) =

m∑

i=1

bi,jki(t)

for all t ∈ T . Substituting (2.4) into (2.3) we arrive at
m∑

i=1

( m∑

j=1

bi,jfj(x)
)
ki(t) =

m∑

i=1

hi(x)ki(t)

which implies (2.5) using the linear independence of k1, . . . , km. The sec-
ond statement in (c) follows immediately from (2.4) and (2.5).

The following result is a special case of much more general results in [5]
but it is a version which can be used directly rather often in applications.

Theorem 2.2. Let T, U be open subsets of Rn and Rr, respectively,
let D be an open subset of T ×U and Xi ⊂ Rn, let a : T → R, b : U → R,
let Hi : D × R → R (0 ≤ i ≤ N), let Fi : Xi → R and let Gi : D → Xi,
1 ≤ i ≤ N . Suppose that

(1) for each (t, x) ∈ D

(2.6) a(t) = H0(t, x, b(x)) +
N∑

i=1

Hi(t, x, Fi[Gi(t, x)]),

(2) Hi is (p + 1)-times continuously differentiable (0 ≤ i ≤ N),
(3) Gi is (p + 1)-times continuously differentiable (1 ≤ i ≤ N),
(4) For all t ∈ T there exists x ∈ U such that

(2.7) (t, x) ∈ D, rank
∂Gi

∂x
(t, x) = n (1 ≤ i ≤ N).
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Then the following statements hold:

(a) If (2) and (3) are valid with p = 0 and if F1, . . . , FN are measurable
or have Baire property then a is continuous on T . (We remark that
no regularity condition for b is needed.)

(b) If (2) and (3) are valid with p = 1 and if b, F1, . . . , FN are continuous
then a is continuously differentiable on T .

(c) If (2) and (3) are valid with p > 1, if b is continuously differentiable
and F1, . . . , FN are p-times continuously differentiable then a is (p +
1)-times continuously differentiable on T .

Proof. The result follows from Theorem 2.7.2 in [4] and Theorem 4.3,
Theorem 5.2 and Theorem 7.2 in [5].

Now we are ready to prove our main result

Theorem 2.3. Let αi ∈ Rn be different vectors, let f, h, gi, ki : (0, 1)n

→ Rn (1 ≤ i ≤ m) and suppose that the functional equation (FE) is
satisfied for all (x, y) ∈ D◦

n. If either the functions h, k1, . . . , km or the
functions f, g1, . . . , gm are measurable or have the Baire property, then
f, h, g1, . . . , gm, k1, . . . , km are infinitely often differentiable.

Proof. (1) Let us introduce in (FE) the new variable t = y
1− x

instead of y so that we obtain

(2.8)
m∑

i=1

(1− x)αj gj(t) = F (t, x) (t, x) ∈ T × T

where T = (0, 1)n and F : T × T → R is defined by

(2.9) F (t, x) = h(t(1− x))− f(x) +
m∑

i=1

(1− t(1− x))αiki

( x

1− t− tx

)
.

We remark that the function ψ : D◦
n → T × T defined by

(2.10) ψ(x, y) =
(
x,

y

1− x

)
(x, y) ∈ D◦

n

is bijective with inverse

(2.11) ψ−1(s, t) = (s, t(1− s)) (s, t) ∈ T × T.

Moreover, for fixed x the function t 7→ F (t, x) is measurable (or has
the Baire property) since by hypothesis h and k1, . . . , km are measurable
(or have the Baire property). Moreover, it is known that the functions
(1−x)α1 , . . . , (1−x)αm are linearly independent on every open interval of
Rn since the α’s are different. Thus Lemma 2.1(a) implies that g1, . . . , gm
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and thus f (see (FE)) are measurable (or have Baire property). In the
same manner we get that h, k1, . . . , km are measurable (or have Baire
property) if f, g1, . . . , gm are measurable (or have Baire property). Thus
we know that all occuring functions in (FE) are measurable (or have the
Baire property).

(2) The idea of the proof is now to apply Theorem 2.2 for all occuring
functions in (FE). From (FE) we get

(2.12) h(y) = f(x) +
m∑

i=1

(1− x)αigi

( y

1− x

)
−

m∑

i=1

(1− y)αiki

( x

1− y

)
,

for all (x, y) ∈ D◦
n. Thus (2.12) is obviously of the form (2.6) with D =

D◦
n ⊂ T ×U = (0, 1)n× (0, 1)n. Let us put a = h, b = f , N = 2m, Fi = gi,

Gi(t, x) = t
1− x , H0(t, x, z) = z, Hi(t, x, z) = (1 − x)αiz, 1 ≤ i ≤ m

Fi = ki, Gi(t, x) = x
1− t , Hi(t, x, z) = −(1 − t)αiz, m + 1 ≤ i ≤ 2m

((t, x, z) ∈ D × R). Because of the componentwise definition of division

in Rn condition (4) of Theorem 2.2 is satisfied (since the matrix ∂Gi
∂x

(t, x)

has elements different from zero only in the diagonal). Thus by Theorem
2.2 (a) f is continuous on T = (0, 1)n.

Now we prove the continuity of gj , 1 ≤ j ≤ m. Using (2.8) and
Lemma 2.1 we obtain the representation

(2.13) gj(t) =
m∑

i=1

ai,j(x1, . . . , xm)F (t, xi), 1 ≤ j ≤ m

where F is given by (2.9). By hypothesis and because of the functions ai,j

are the quotients of determinants where the elements are C∞-functions
we get that the ai,j are C∞-functions defined on some non-void open set
U1×· · ·×Um. Applying once more Theorem 2.2 (a) (with N = m(m+2),
a = gj , D = T × U1 × · · · × Um) we get that gj , 1 ≤ j ≤ m is continuous.

In the same manner we can prove the continuity of f and k1, . . . , km.

(3) Finally using Theorem 2.2 (b) and Theorem 2.2 (c) we get first
that f, h, gi, ki (1 ≤ i ≤ m) are continuously differentiable and then (by
the induction step of Theorem 2.2 (c)) that all occuring functions in (FE)
are infinitely often differentiable. (Note that the inner functions of the
unknown functions are infinitely often differentiable.)
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Remark 2.4. (a) We remark that if αi = αj for some i 6= j, then
the regularity of the functions gi, gj and ki, kj does not follows from the
equation, because by adding an arbitrary function to gi (or to ki) and
subtracting from gj (or kj), the equation remains satisfied. But such cases
may eliminate reducing such terms.

(b) To prove the continuity of f and h in Theorem 2.3 it was possible
to apply Theorem 2.2 (a) directly. But for the proof of the continuity of
g1, . . . , gm (or k1, . . . , km) we needed a trick: After introducing a new
variable t we arrived at (2.8) and could express gi as a linear combination
of functions of the form (2.9) (which is of the form (2.6)).

(c) Sometimes the above trick is not necessary. In case of (FE) we
can take the bijective transformation ϕ : D◦

n → T × T = (0, 1)n × (0, 1)n,
defined by

(2.14) ϕ(x, y) =
( x

1− y
,

y

1− x

)
, (x, y) ∈ D◦

n

with inverse

(2.15) ϕ−1(s, t) =
(s(1− t)

1− st
,
t(1− s)
1− st

)
, (s, t) ∈ T × T.

Putting s = x
1− y and t = y

1− x into (FE) we get, dividing (FE) by
(1− x)αi for fixed i, 1 ≤ i ≤ m:

gi(t) = b(s, t)−αi
[
h(a(t, s))− f(a(s, t))

]
(2.16)

+
m∑

j=1

b(t, s)αj b(s, t)−αikj(s)−
m∑

j=1, j 6=i

b(s, t)αj−αigj(t),

where a(s, t) = s(1− t)
1− st , b(s, t) = 1 − a(s, t) = 1− s

1− st . This equation
is of the form (2.6) but Theorem 2.2(a) cannot be applied to prove the
continuity of gi since in the last sum of equation (2.16) the inner functions
of gj (1 ≤ j ≤ m, j 6= i) are only dependent upon t but not on x so that
the rank condition (2.7) is not satisfied. Nevertheless, if m = 1 in (FE) (so
that the last sum in (2.16) disappears) then the continuity of g1 follows
(similarly we get the continuity of k1).

3. The generalized fundamental equation of information

Theorem 3.1. Let α ∈ Rn and let f, h, g, k : (0, 1)n → R satisfy

(3.1) f(x) + (1− x)αg
( y

1− x

)
= h(y) + (1− y)αk

( x

1− y

)
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for all (x, y) ∈ D◦
n. Then all functions f , g, h, k which are measurable or

have the Baire property are given by

f(x) = B1 ¯ log x + (A1 + A2)¯ log(1− x) + b3 + a4(3.2)

g(x) = A1 ¯ log x + A2 ¯ log(1− x) + a3

h(x) = A1 ¯ log x + (B1 + A2)¯ log(1− x) + a3 + a4

k(x) = B1 ¯ log x + A2 ¯ log(1− x) + b3

for α = (0, 0, . . . , 0), or

f(x) = b1x
α − a3(1− x)α + a4 + ϕ1(x)(3.3)

g(x) = a1x
α + a2(1− x)α + a3 + ϕ2(x)

h(x) = a1x
α − b2(1− x)α + a4 + ϕ2(x)

k(x) = b1x
α + a2(1− x)α + b2 + ϕ1(x)

for α 6= (0, 0, . . . , 0), where

a2 = 0 and ϕ1(x) = ϕ2(x) = Sα,A(x)(3.4)

:= xα(A¯ log x) + (1− x)α(A¯ log(1− x))

if α ∈ Un, and where

ϕ1(x) = a(xi − xj), ϕ2(x) = −ϕ1(x) if xα = xixj(3.5)
for some fixed i 6= j

and where

(3.6) ϕ1 = ϕ2 = 0 in all other cases;

here A,A1, A2, B1 ∈ Rn and a, a1, a2, a3, a4, b1, b2, b3 ∈ R.

Proof. (a) It is only an easy computation to show that the solutions
(3.2)–(3.6) satisfy equation (3.1). Moreover these solutions are measurable
and have the Baire property.

(b) To prove the reverse we first prove the theorem in the case n = 1.
Let us differentiate equation (3.1) with respect to x, and the resulting
equation with respect to y, to obtain (after some rearrangement)

(1− x)α−2

[
g′

( y

1− x

)
(1− α) +

y

1− x
g′′

( y

1− x

)]
(3.7)

= (1− y)α−2

[
k′

( x

1− y

)
(1− α) +

x

1− y
k′′

( x

1− y

)]
.
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Using the bijective transformation ϕ : D◦
1 → (0, 1)2 given by (2.14), equa-

tion (3.7) goes over into

(1− t)2−α
(
g′(t)(1− α) + tg′′(t)

)
(3.8)

= (1− s)2−α(k′(s)(1− α) + sk′′(s)) = c (say).

Introducing the functions

(3.9) G(t) = t1−αg′(t), K(t) = t1−αk′(t), t ∈ (0, 1),

we get from equation (3.8)

(3.10) tα(1− t)2−αG′(t) = sα(1− s)2−αK ′(s) = c

for all s, t ∈ (0, 1). Integrating G′ in (3.10) we get

G(t) =
∫

c dt

tα(1− t)1−α
= −c

∫ ( t

1− t

)α( t

1− t

)′
dt

which implies

g′(t) = tα−1G(t) =




−c(1− t)α−1

α− 1 + btα−1 α 6= 1

−c ln 1− t
t + b α = 1

for some constants b, c ∈ R. Integration of g′ yields g(x) = Lα
a1,a2,a3

(x)
with

(3.11) Lα
a1,a2,a3

(x)=





a1 log x+a2 log(1−x)+a3 α = 0
a1(x log x+(1−x) log(1−x))+a2x+a3 α = 1
a1x

α+a2(1−x)α+a3 α /∈{0, 1},
where a1, a2, a3 ∈ R. In the same manner, (3.9) leads to k(x) = Lα

b1,b2,b3
(x)

for some constants b1, b2, b3 ∈ R. Since g and k satisfy the same differ-
ential equation (see (3.8)), substitution of g and k into (3.8) leads to the
additional information

(3.12) a1 = b1 if α = 1 ∈ U1, a2 = b2 if α 6= 1.

Thus g and k have exactly the form given in (3.2) to (3.6) (Note that the
case (3.5) can only occur if n ≥ 2). If we now substitute the forms of g
and k into (3.1), then we can separate the variables x and y, and obtain
the forms of f and h (for example, in the case α /∈ {0, 1} we get

f(x)− b1x
α + a3(1− x)α = h(y)− a1y

α + b3(1− y)α = a4 (say).
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Thus we get exactly (3.3) with ϕ1 = ϕ2 = 0; note that — for instance —
in the case α = 1 the function f can be rewritten into f(x) = A(x log x +
(1− x) log(1− x)) + (b1 + a3)x + a4 − a3.)

(c) To prove Theorem 3.1 in the n-dimensional case we use induction.
We will write x = (x1, ξ), y = (y1, η), α = (α1, β) ∈ Rn where ξ =
(x2, . . . , xn), η = (y2, . . . , yn), β = (α2, . . . , αn) ∈ Rn−1 and we assume
that Theorem 3.1 is valid for all dimensions k, 1 ≤ k ≤ n − 1. Now (3.1)
goes over into

f(x1, ξ) + (1− x1)α1(1− ξ)βg
( y1

1− x1
,

η

1− ξ

)
(3.13)

= h(y1, η) + (1− y1)α1(1− η)βk
( x1

1− y1
,

ξ

1− η

)

for all (x1, y1) ∈ D◦
1 and (ξ, η) ∈ D◦

n−1. Fixing (ξ, η) and defining

F (r) := f(r, ξ), H(r) := h(r, η)(3.14)

G(r) := (1− ξ)βg
(
r,

η

1− ξ

)
, K(r) := (1− η)βk

(
r,

ξ

1− η

)
(3.15)

for r ∈ (0, 1) we get from (3.13)

(3.16) F (x1) + (1− x1)α1G
( y1

1− x1

)
= H(y1) + (1− y1)α1K

( x1

1− y1

)

for (x1, y1) ∈ D◦
1 . Now we consider three cases:

(d) α1 = 1 in (3.16) with the subcases

(d1) β = 0,

(d2) β 6= 0, β ∈ Un−1,

(d3) β 6= 0, β /∈ Un−1,

(e) α1 = 0 in (3.16),

(f) α1 6∈ {0, 1} in (3.16).

(d) Let α1 = 1 in (3.16). Then by part (b) we get letting ξ, η vary
again and putting S(r) = r log r + (1− r) log(1− r), r ∈ (0, 1):

f(x1, ξ) = a1(ξ)S(x1) + a2(ξ)x1 + a3(ξ),(3.17)

h(x1, ξ) = a1(ξ)S(x1) + b2(ξ)x1 + b3(ξ),(3.18)

x1 ∈ (0, 1), ξ ∈ (0, 1)n−1 (see (3.3) and (3.4)). Fixing temporarily ξ = η ∈
(0, 1/2)n−1 in (3.15), equation (3.16) is again valid so that again from the
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1-dimensional solution of (3.16) we obtain

(1− ξ)βg
(
x1,

ξ

1− ξ

)
= a1(ξ)S(x1) + c2(ξ)x1 + c3(ξ),(3.19)

(1− ξ)βk
(
x1,

ξ

1− ξ

)
= a1(ξ)S(x1) + d2(ξ)x1 + d3(ξ),(3.20)

for x1 ∈ (0, 1), ξ ∈ (0, 1/2)n−1. Using the bijective transformation ψ :
(0, 1/2)n−1 → (0, 1)n−1 given by (ξ ∈ (0, 1/2)n−1, % ∈ (0, 1)n−1)

(3.21) ψ(ξ) =
ξ

1− ξ
= %, ψ−1(%) =

%

1 + %
= ξ,

(3.19) and (3.20) go over into

g(x1, %) = A1(%)S(x1) + A2(%)x1 + A3(%)(3.22)

k(x1, %) = A1(%)S(x1) + B2(%)x1 + B3(%)(3.23)

for all x1 ∈ (0, 1), % ∈ (0, 1)n−1 where

A1(%) = (1 + %)βa1

( %

1 + %

)
, Ai(%) = (1 + %)βci

( %

1 + %

)
,(3.24)

B1(%) = (1 + %)βd1

( %

1 + %

)

(i = 2, 3). In order to determine f , g, h, k we determine the functions
dependent on ξ and % ∈ (0, 1)n−1 defined in (3.17), (3.18), (3.22) and

(3.23). Note that ai, bj , Ai, Bj (i = 1, 2, 3, j = 1, 2) are measurable or have
Baire property because Lemma 2.1(a) can be applied since {S(x1), x1, 1}
are linearly independent. We substitute the forms of f , g, h, k into (3.1)

and by comparison of the coefficients of x1 log x1, (1 − x1) log(1 − x1),

(1 − x1 − y1) log(1 − x1 − y1), x1, y1, 1 we obtain (in this order) for
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(ξ, η) ∈ D◦
n−1

a1(ξ) = (1− η)βA1

( ξ

1− η

)
or a1(p · q) = qβA1(p),(3.25)

a1(ξ) = (1− ξ)βA1

( η

1− ξ

)
or q−βa1(1− q) = A1(p),(3.26)

(1− ξ)βA1

( η

1− ξ

)
= (1− η)βA1

( ξ

1− η

)
or(3.27)

A1(t)
(1− t)β

=
A1(s)

(1− s)β
,

a2(ξ)− (1− ξ)βA3

( η

1− ξ

)
= (1− η)βB2

( ξ

1− η

)
,(3.28)

(1− ξ)βA2

( η

1− ξ

)
= b2(η)− (1− η)βB3

( ξ

1− η

)
,(3.29)

a3(ξ) + (1− ξ)βA3

( η

1− ξ

)
= b3(η) + (1− η)βB3

( ξ

1− η

)
.(3.30)

In (3.27) we used the transformation ϕ (see (2.14)) whereas in (3.25) and
(3.26) we used the bijective transformation γ : D◦

n−1 → (0, 1)2(n−1) given
by

(3.31)

γ(u, v) =
( u

1− v
, 1− v

)
= (p, q),

γ−1(p, q) = (pq, 1− q) = (u, v),

u, v ∈ D◦
n−1, p, q ∈ (0, 1)n−1.

From (3.25) to (3.27) we get for some real constants a, b, c:

(3.32)
a1(ξ) = cξβ = A1(ξ), a1(ξ) = a(1− ξ)β ,

A1(ξ) = a, A1(ξ) = b(1− ξ)β ;

which implies

(3.33) c = a = b 6= 0 if β = 0

and

(3.34) c = a = b = 0 if β 6= 0.

Thus in both cases (3.33) and (3.34) the functions a1 and A1 are de-
termined and a1 = A1. We now determine ai, bi, Ai, Bi (i = 2, 3) in
(3.17), (3.18), (3.22) and (3.23), using the equations (3.28)–(3.30), which
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are (n−1)-dimensional functional equations of type (3.1) for which we can
use the induction hypothesis.

Case (d1). In (3.28)–(3.30) we first consider the case β = 0 (and
α1 = 1). So that (α1, β) = (1, 0, . . . , 0) ∈ Un. Thus we get by induction
hypothesis from (3.28) (which is a special case of (3.1) with h = 0, that is,
A1 = 0, A2 = −B1, a3 = −a4)

a2(ξ)B′
1 ¯ (log ξ − log(1− ξ)) + b′3 + a′4(3.35)

−A3(ξ) = −B′
1 ¯ log(1− ξ)− a′4(3.36)

B2(ξ) = B′
1 ¯ (log ξ − log(1− ξ)) + b′3(3.37)

for some constants b′3, a
′
4 ∈ R and B′

1 ∈ Rn−1. In the same manner we
obtain from (3.29) (which is a special case of (3.1) with f = 0, that is,
B1 = 0, A2 = −A1, b3 = −a4)

A2(ξ) = A′1 ¯ (log ξ − log(1− ξ)) + a′3(3.38)

b2(ξ) = A′1 ¯ (log ξ − log(1− ξ)) + a′3 + a′′4(3.39)

−B3(ξ) = −A′1 ¯ log(1− ξ)− a′′4(3.40)

where a′3, a
′′
4 ∈ R and A′1 ∈ Rn−1. Finally we consider (3.30) which is of

the form (3.1) with solution (3.2) (by induction hypothesis), but A3 and
B3 have the special forms (3.36) and (3.40), respectively. Taking this into
account we get by comparison with (3.2)

(3.41) A′1 = B′
1

and

a3(ξ) = A′1 ¯ log(1− ξ) + a′′4 + a′5(3.42)

b3(ξ) = A′1 ¯ log(1− ξ) + a′4 + a′5(3.43)

for some constant a′5 ∈ R. Substituting (3.35)–(3.43) together with (3.32)
and (3.33) into (3.17), (3.18), (3.22) and (3.23) we get solutions of the
form (3.3) and (3.4) (where Sα,A(x) = S(1,0,... ,0),(a,A′1)(x1, ξ) and, with
the notations of (3.3) and (3.4), b1 = b′3, a3 = a′4, a4 = a′4 + a′′4 + a′5,
a1 = a′3, a2 = 0, b2 = a′′4).

Case (d2). Now we handle the case (3.34), that is, α = (1, β) where
β 6= 0 and β ∈ Un−1. Without loss of generality we may assume that
ξβ = x2. Like in case (d1) we get by induction hypothesis from (3.28)
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(which is a special case of (3.3) and (3.4) with h = 0, that is, A = 0,
a1 + b2 = 0, a4 − b2 = 0)

a2(ξ) = (b′1 + a′3)x2 + a′4 − a′3 = (c− c3)x2 + c1 + c3(3.45)

−A3(ξ) = (−a′4 − a′2)x2 + a′2 + a′3 = −c1x2 − c3(3.46)

B2(ξ) = (b′1 − a′2)x2 − a′2 + a′4 = cx2 + c1(3.47)

for some constants a′2, a
′
3, a

′
4, b

′
1 ∈ R. The second equalities in (3.45)–(3.47)

arise from the first equalities in (3.45)–(3.47) by putting c1 = a′2 + a′4,
c3 = −a′2 − a′3, c = b′1 − a′2. In the same manner we obtain from (3.29)
(which is a special case of (3.3) and (3.4) with f = 0, that is, A = 0,
b1 + a3 = 0, a4 − a3 = 0)

A2(ξ) = (a′′1 − a′′2)x2 + a′′2 + a′′4 = dx2 + d1(3.48)

b2(ξ) = (a′′1 + b′′2)x2 + a′′4 − b′′2 = (d− d3)x2 + d1 + d3(3.49)

−B3(ξ) = (−a′′4 − a′′2)x2 + a′′2 + b′′2 = −d1x2 − d3(3.50)

for some constant a′′1 , a′′2 , a′′4 , b′′2 ∈ R and the constants defined by d1 =
a′′2 + a′′4 , d3 = −a′′2 − b′′2 , d = a′′1 − a′′2 . In (3.45)–(3.50) we may suppose
that

(3.51) d1 = −c1

(Replacing in (3.45)–(3.50) c1 by c′1 := c1 − d1 and d1 by d′1 := d1 − c1

an immediate calculation shows that we get again solutions of (3.28) and
(3.29). But this time we have c′1 = −d′1.) Substituting the forms of A3

and B3 (with d1 = −c1) into (3.30) and separating the variables we arrive
at

(3.52) a3(ξ)− (c3 − c1)x2 + c3 = b3(η)− (d3 + c1)y2 + d3 = e

for some constant e. Putting (3.45)–(3.52) (together with a1(ξ) = A1(ξ) =
0) into (3.17), (3.18), (3.22), (3.23) we obtain the solution (3.3) and (3.5):

f(x1, ξ) = cx1x2 − c3(1− x1)(1− x2) + e + c1(x1 − x2),

g(x1, ξ) = dx1x2 + c3 − c1(x1 − x2),

h(x1, ξ) = dx1x2 − d3(1− x1)(1− x2) + e− c1(x1 − x2),

k(x1, ξ) = cx1x2 + d3 − d1(x1 − x2).

Case (d3). Now we treat the case α = (1, β), β 6= 0, β /∈ Un−1. Like
in case (d1) and (d2) by induction hypothesis the solutions of (3.28) and
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(3.29) yield (see (3.3) and (3.6) with h = 0 (that is, a1 = b2 = a4 = 0) and
f = 0 (that is, b1 = a3 = a4 = 0), respectively):

a2(ξ) = b′1ξ
β − a′3(1− ξ)β , A2(ξ) = a′′1ξβ + a′′2(1− ξ)β(3.53)

−A3(ξ) = a′2(1− ξ)β + a′3, b2(ξ) = a′′1ξβ − b′′2(1− ξ)β(3.54)

B2(ξ) = b′1ξ
β + a′2(1− ξ)β , −B3(ξ) = a′′2ξβ + b′′2(3.55)

Here a′2, a
′
3, a

′
1, a

′′
2 , b′1, b

′′
2 are constants and again without loss of generality

we may assume

(3.56) a′2 = a′′2

(otherwise replace a′2 and a′′2 in (3.53)–(3.55) by a′2 + a′′2). Using (3.30)
and the forms of A3 and B3 (with a′2 = a′′2) and separating the variables
we arrive at

a3(ξ) = a′3(1− ξ)β + k(3.57)

b3(ξ) = b′′2(1− ξ)β + k(3.58)

for some constant k ∈ R. Substituting (3.53)–(3.57) (and a1(ξ) = A1(ξ) =
0) into (3.17), (3.18), (3.22), (3.23) we arrive at the solutions (3.3) and
(3.6) (where a1 = a′1, a2 = −a′2, a3 = −a′3, a4 = k, b1 = b′1, b2 = −b′′2 ,
ϕ1 = ϕ2 = 0).

(e) Now let α1 = 0 in (3.16). Like in (d) we get from (3.14)–(3.16)
using the 1-dimensional solutions of (3.16) for d1 = 1 the following repre-
sentations:

f(x1, ξ) = b1(ξ) log x1 + (a1 + a2)(ξ) log(1− x1)(3.59)

+ (b3 + a4)(ξ)

g(x1, ξ) = A1(ξ) log x1 + A2(ξ) log(1− x1) + A3(ξ)(3.60)

h(x1, ξ) = a1(ξ) log x1 + (a2 + b1)(ξ) log(1− x1)(3.61)

+ (a3 + a4)(ξ)

k(x1, ξ) = B1(ξ) log x1 + A2(ξ) log(1− x1) + B3(ξ),(3.62)

x1 ∈ (0, 1), ξ ∈ (0, 1)n−1. Substitution of these expressions into (3.13) and
comparison of the coefficients of log(1−x1), log x1, log(1−x1−y1), log y1,
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log(1− y1), 1 yields (in this order) for (ξ, η) ∈ D◦
n−1

(a1 + a2)(ξ) = (1− ξ)β(A1 + A2)
( η

1− ξ

)
(3.63)

or q−β(a1 + a2)(1− q) = (A1 + A2)(q) = a′

b1(ξ) = (1− η)βB1

( ξ

1− η

)
or b1(pq) = pβB1(q)(3.64)

(1− ξ)βA2

( η

1− ξ

)
= (1− η)βA2

( ξ

1− η

)
(3.65)

or
A2(t)

(1− t)β
=

A2(s)
(1− s)β

= a′2

(a2 + b1)(η) = (1− η)β(A2 + B1)
( ξ

1− η

)
(3.66)

or q−β(a2 + b1)(1− q) = (A1 + A2)(q) = b′

a1(η) = (1− ξ)βA1

( η

1− ξ

)
or a1(pq) = pβA1(q)(3.67)

(b3 + a4)(ξ) = (1− ξ)βA3

( η

1− ξ

)
(3.68)

= (a3 + a4)(η) + (1− η)βB3

( ξ

1− η

)

Here again the transformations ϕ and γ (see (2.14) and (3.31)) were used
(p, q, s, t ∈ (0, 1)n−1), and a′, b′, a′2 are real constants. From (3.63)–(3.67)
we obtain (for some constants a′1, b

′
1)

b1(ξ) = B1(ξ) = b′1ξ
β , a1(ξ) = A1(ξ) = a′1ξ

β

and

a′1ξ
β = A1(ξ) = ((A1 + A2)−A2)(ξ) = a′ − a′2(1− ξ)β ,

b′1ξ
β = B1(ξ) = ((A2 + B1)−A2)(ξ) = b′ − a′2(1− ξ)β .

This implies

a′ = a′1 + a′2 and b′ = b′1 + a′2 if β = 0,(3.69)

a′ = a′1 = a′2 = b′ = b′1 if β ∈ Un−1,(3.70)

a′ = a′1 = a′2 = b′ = b′1 = 0 if β 6= 0, β /∈ Un−1,(3.71)



A regularity theorem in information theory 355

If β = 0 then (3.69) implies (see (3.59)–(3.62))

f(x1, ξ) = b′1 log x1 + (a′1 + a′2) log(1− x1) + (b3 + a4)(ξ)

=: f ′(x1) + (b3 + a4)(ξ)

g(x1, ξ) = a′1 log x1 + a′2 log(1− x1) + A3(ξ) =: g′(x1) + A3(ξ)

h(x1, ξ) = a′1 log x1 + (a′2 + b′1) log(1− x1) + (a3 + a4)(ξ)

=: h′(x1) + (a3 + a4)(ξ)

k(x1, ξ) = b′1 log x1 + a′2 log(1− x1) + B3(ξ) =: k′(x1) + B3(ξ).

The still undetermined functions in these expressions satisfy equation (3.68)
so that by induction hypothesis it is immediate to see that f, g, h, k have
the form (3.2) using the bilinearity of the inner product. (Note that in
this case f ′, g′, h′, k′ and b3 + a4, A3, a3 + a4, B3 satisfy equation (3.1)
for α1 = 0, (x, y) ∈ D◦

1 and β = 0, (ξ, η) ∈ D◦
n−1, respectively.)

If β ∈ Un−1 we may suppose without loss of generality that ξβ = x2,
that is α = (0, 1, 0, . . . , 0) ∈ Un. But then we get using (3.63)–(3.67) and
(3.70)

f(x1, ξ) = a′x2 log x1 + a′(1− x2) log(1− x1) + (b3 + a4)(ξ)

g(x1, ξ) = a′x2 log x1 + a′(1− x2) log(1− x1) + A3(ξ)

h(x1, ξ) = a′x2 log x1 + a′(1− x2) log(1− x1) + (a3 + a4)(ξ)

k(x1, ξ) = a′x2 log x1 + a′(1− x2) log(1− x1) + B3(ξ).

Again using induction hypothesis for the solution of equation (3.68) an
easy calculation shows that we arrive now at solutions of the form (3.3)
where xα = ξβ = x2.

In case β 6= 0, β /∈ Un−1 we see from (3.68), (3.71) and (3.59)–(3.62)
that f , g, h, k satisfy (3.68) which by induction hypothesis yields solution
(3.3) and (3.5) (or (3.6)). (Note that xα = ξβ .)

(f) Finally we let α1 /∈ {0, 1} in (3.16). Like in part (d) we arrive at
the following form for the solutions of equation (3.1):

f(x1, ξ) = d′1(ξ)
α1 − a′3(ξ)(1− x1)α1 + a′4(ξ)(3.72)

g(x1, ξ) = c′1(ξ)
α1 + a′2(ξ)(1− x1)α1 + c′3(ξ)(3.73)

h(x1, ξ) = a′1(ξ)
α1 − b′2(ξ)(1− x1)α1 + a′4(ξ)(3.74)

k(x1, ξ) = b′1(ξ)
α1 + a′2(ξ)(1− x1)α1 + c′2(ξ)(3.75)

(x1 ∈ (0, 1), ξ ∈ (0, 1)n−1). Again substituting these expressions into
(3.13) we get by comparison of the coefficients of xα1

1 , (1 − x1)α1 , 1,
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(1 − y1)α1 , yα1
1 , (1 − x1 − y1)α1 (in this order) for (ξ, η) ∈ D◦

n−1 and
p, q, s, t ∈ (0, 1)n−1:

d′1(ξ) = (1− η)βb′1
( ξ

1− η

)
or d′1(pq) = qβb′1(p)(3.76)

a′3(ξ) = (1− ξ)βa′3
( η

1− ξ

)
or (1− ξ)−βa′3(ξ) = c′3(p) = a′′3(3.77)

a′4(ξ) = a′4(η) = a′′4 (say)(3.78)

b′2(η) = (1− η)βc′2
( ξ

1− η

)
or (1− η)−βb′2(η) = c′2(p) = b′′2(3.79)

a′1(η) = (1− ξ)βc′1
( η

1− ξ

)
or a′1(pq) = qβc′1(p)(3.80)

(1− ξ)βa′2
( η

1− ξ

)
= (1− η)βa′2

( ξ

1− η

)
or(3.81)

a′2(t)
(1− t)β

=
a′2(s)

(1− s)β
= a′′2

From (3.76)–(3.81) we get (for some constants a′′1 , b′′1)

d′1(ξ) = b′′1ξβ = b′1(ξ), a′1(ξ) = a′′1ξβ = c′1(ξ), a′4(ξ) = a′′4 , c′3(ξ) = a′′3

a′3(ξ) = a′′3(1−ξ)β , c′2(ξ) = b′′2 , b′2(ξ) = b′′2(1−ξ)β , a′2(ξ) = a′′2(1−ξ)β .

Substituting these expressions into (3.72)–(3.75) we get exactly solutions
(3.3) with (3.6) (where b1 = b′′1 , a2 = a′′2 , a3 = a′′3 , a4 = a′′4 , b2 = b′′2).

Remark. The idea of the proof of Theorem 3.1 in the n-dimensional
case is very simple: Having the forms of f , g, h and k (see for example
(3.17), (3.18), (3.22) and (3.23), where (3.14), (3.15) and (3.21) were used)
which are dependent upon unknown functions, we substitute these expres-
sions into (3.1) and by comparison of linearly independent terms we get
systems of functional equations for the unknown functions for which we
can use the induction hypothesis. The most complicated cases are (in our
notation) α1 = 1, β = 0 and α1 = 1, β ∈ Un−1, because in the first of
these two cases we are lead to the case α ∈ Un and in the second case
where xα = x1xi for some 2 ≤ i ≤ n we get not only the expected solution
but also the additional solution (3.5). The other cases are rather obvious.
For a completely different way to prove Theorem 3.1 in the case α1 = 1,
β = 0 and f = g = h = k we refer the reader to [7] and [8].
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