Latent additivity and a differential equation

By ERICH NEUWIRTH (Wien)

1. Statement of the problem

In psychology one sometimes studies two-parameter families of distribution functions V(z/x, y) where x and y are the parameters. These distribution functions often depend on x and y only through a real-valued function F such that $V(z/x, y) = V_1(z/F(x, y))$. A very important class of models related to Rasch's theory of specific objectivity (see [2], [3], [4] e.g.) are models where F is of the form F(x, y) = f(g(x) + h(y)). Functions of this form will be called latent additive in the following. (In some references these functions also are called nomographic.) It will be shown that the differential equation

$$F_{xy}(F_{xx}F_y^2 - F_{yy}F_x^2) = F_x F_y(F_{xxy}F_y - F_{xyy}F_x)$$

nearly characterizes the class of latent additive functions. (The full result is given in corrollary 1 at the end of the paper.)

2. Theorems about latent additive functions

Let A be some subset of \mathbb{R}^k . $C^n(A)$ is the set of all functions defined on A such that all partial derivatives up to order n exist and are continuous.

Theorem 1. Let I_1 and I_2 be (possibly infinite) intervals in \mathbf{R}_1 and let $g \in C^3(I_1)$ $h \in C^3(I_2)$ and $f \in C^3(g(I_1) + h(I_2))$. Then F(x, y) = f(g(x) + h(y)) fulfills the equation

$$F_{xy}(F_{xx}F_y^2 - F_{yy}F_x^2) = F_x F_y(F_{xxy}F_y - F_{xyy}F_x).$$

PROOF. Trivial.

This result is essentially known (see [1] e.g.) and it is also known that there exist functions fulfilling our differential equation without being latent additive. (An example can be found in [1].)

Therefore we will try to impose further conditions on F such that fulfillment of our differential equation also yields latent additivity.

For technical reasons we first prove

Lemma 1. Let I_1 and I_2 be intervals (possibly infinite) in \mathbb{R}_1 and let $R = I_1 \times I_2$. For $n \ge 1$ let $F \in C^n(R)$ fulfill the partial differential equation $F_x = F_y$. Then there exists $f \in C(I_1 + I_2)$ with F(x, y) = f(x + y).

PROOF. Let T(x, y) = (x + y, x - y). Then $T^{-1} = \frac{1}{2}T$ and the projection of $T^{-1}(R)$ onto the x-axis is

$$S_1 = \frac{1}{2} (I_1 + I_2).$$

Let $S=T^{-1}(R)$ and G(x, y)=F(T(x, y)). (G is defined on S). Since T is a linear isomorphism between S and R $G \in C^n(S)$ and we have

$$G_{y}(x, y) = F_{x}(x, y) - F_{y}(x, y) = 0.$$

Therefore there exists $g \in C^n(S_1)$ with G(x, y) = g(x) and therefore

$$F(x, y) = G\left(\frac{1}{2}(x+y, x-y)\right) = g\left(\frac{1}{2}(x+y)\right).$$

Defining $f(x) = g\left(\frac{1}{2}x\right)$ for $x I_1 + I_2$ we have

$$F(x, y) = f(x+y)$$
 and $f \in C^n(I_1 + I_2)$.

With the help of this lemma we can state sufficient conditions for latent additivity.

Theorem 2. Let I_1 and I_2 be (possibly infinite) intervals in \mathbf{R}_1 . Let $R = I_1 \times I_2$ and $F \in C^3(R)$. Let furthermore $F_x > 0$ and $F_y > 0$ on R and F fulfill the third-order partial differential equation $F_{xy}(F_{xx}F_y^2 - F_{yy}F_x^2) = F_xF_y(F_{xxy}F_y - F_{xyy}F_x)$. Then there exist $f \in C^3(I_1)$, $g \in C^3(I_2)$ and $h \in C^3(f(I_1) + h(I_2))$ with f' > 0, g' > 0 and h' > 0 on their domains such that F(x, y) = f(g(x) + h(y)) on R.

PROOF. Define $H(x, y) = (F_y F_{xx} - F_x F_{xy})/F_x F_y$. Then one easily sees $H_y = 0$ and $H \in C^1(R)$. Therefore there exists $r \in C^1(I_1)$ with H(x, y) = r(x). Let s(x) be an indefinite integral of r(x) and let g(x) be an indefinite integral of $\exp(s(x))$. Then $g \in C^3(I_1)$ and g' > 0 on I_1 . Furthermore we have

$$\frac{g''}{g'} = (\ln g')' = (F_y F_{xx} - F_x F_{xy})/F_x F_y.$$

Therefore defining $T(x, y) = g'(x) \cdot F_y(x, y) / F_x(x, y)$ we have

$$T_x = g'(F_{xy}F_x - F_{xx}F_y)/F_x^2 + g''F_yF_x$$

and we easily see $T_x=0$.

We also have $T \in C^2(R)$ and therefore there exists $t \in G^2(I_2)$ with T(x, y) = t(y). Let h(y) be an indefinite integral of t(y). Since T(x, y) = t(y) > 0 h is strictly increasing. Since g also is strictly increasing the inverse functions g^{-1} and h^{-1} are defined on the intervals $J_1 = g(I_1)$ and $J_2 = h(I_2)$. We have

$$g'(x) F_y(x, y) / F_x(x, y) = h'(y)$$

or equivalently

$$F_y(x, y)/h'(y) = F_x(x, y)/g'(x)$$
 for all $(x, y) \in K$.

Now we define

$$G(x, y) = F(g^{-1}(x), h^{-1}(y)).$$

G is defined on $J_1 \times J_2$ and we have

$$G_x(x, y) = F_x(g^{-1}(x), h^{-1}(y))/g'(g^{-1}(x))$$

$$G_y(x, y) = F_y(g^{-1}(x), h^{-1}(y))/h'(h^{-1}(y)).$$

Therefore we have $G_x=G_y$ on $J_1\times J_2$. Furthermore we have $1/(g'og^{-1})\in C^2(J_1)$ and $1/(h'oh^{-1})\in C^2(J_2)$. Therefore $G\in C^3(J_1\times J_2)$ and according to Lemma 1 there exists $f\in C^3(J_1+J_2)$ with G(x,y)=f(x+y). Since F(x,y)=G(g(x),h(y)) we have F(x+y)=f(g(x)+h(y)) and our theorem is proved.

Combining both theorems we get the following characterization result for latent additive functions:

Corollary 1. Let I_1 and I_2 be (possibly infinite) intervals in \mathbf{R}_1 , let $F \in C^3(I_1 \times I_2)$ and $F_x > 0$ and $F_y > 0$ on $I_1 \times I_2$. Then F(x, y) is of the form F(x, y) = f(g(x) + h(y)) with $g \in C^3(I_1)$, $h \in C^3(I_2)$ and $f \in C^3(g(I_1) + h(I_2))$ if and only if $F_{xy}(F_{xx}F_y^2 - F_{yy}F_x^2) = F_x F_y(F_{xxy}F_y - F_{xyy}F_x)$.

with
$$g \in C^3(I_1)$$
, $h \in C^3(I_2)$ and $f \in C^3(g(I_1) + h(I_2))$ if and only if $F_{xy}(F_{xx}F_y^2 - F_{yy}F_x^2) = F_x F_y(F_{xxy}F_y - F_{xyy}F_x)$.

- R. C. Buck, Approximate Complexity and Functional Representation. *Journal of Mathematical Analysis and Applications* 70 (1979), 280—298.
- [2] G. FISCHER, Einführung in die Theorie psychologischer Tests. Verlag Hans Huber, Bern 1974, S. 407ff.
- [3] G. RASCH, On general laws and the meaning of measurement in psychology. Berkeley symposium on mathematical statistics and probability. Univ. of California Press 1961.
- [4] G. RASCH, An informal report on a theory of objectivity in comparisons. Proc of the NUFFIC international summer session, The Hague, July 14—28, 1966.

INSTITUT FÜR STATISTIK UND INFORMATIK DER UNIVERSITÄT WIEN

(Received February 24, 1984)