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ABSTRACT

Let f(n) be a nonconstant polynomial with integer coefficients and k, ¢, # and v positive integers.
The first author introduced earlier the generalized Euler totient function ¢§*}(n) and the generalized
Dedekind y-functions ¥{*)(n), wf*}(n), and w}:?(n) and obtained asymptotic formulae for their
summatory functions subject to the condition N,(n)=0(n") for some & O=e<1, N,(n) being
the number of incongruent solutions mod n of f(x)=0(mod n). In this paper we obtain these
asymptotic formulae without any such condition and with better estimates for the error functions.
Key words and phrases: Mobius function, Euler’s totient function, Dedekind’s y-function.

1. Introduction. Let f=f(x) be a nonconstant polynomial with integer coeffi-
cients and let k and ¢ be positive integers. In [1] the first author studied the generalized
Euler totient function ¢f%(n) defined to be the number of incongruent -tuples of
integers (ay, ds, ...,a)modn such that ((f(a),f(a), ...,f(a)), n)y=1, it being
understood that the t-tuples (a,,as,...,a,) and (b, b,,...,b,) are congruent
mod n iff a;=b; (mod n) for 1=i=t and the symbol (q,b,c, ...,e), stands for
the largest kth power common divisor of a,b,c,...,e and (a,b,c,...,€);=
(a, b, c, ..., e) with the convention (0,0, ..., 0),=0.

This function @%(n) reduces when f(x)=x, t=1 and k=1 to Euler’s totient
function @(n) and for special choices of ¢ and k, the various extensions of ¢(n)
studied by E. CoHeN, E. K. HAVILAND, JORDAN, V. L. KLEE, P. J. McCARrTHY, and
SCHEMMEL. ¢, ,(n) has been studied by P. K. MENON. (For details we refer to [1])

Among other things, in [1] it has been proved that as x-eo

1
(L.1) S o (n) = ax+1+0(x" " F),
n=Ex

where

13 pmNGY _ 1 N (@)
(1.2) o= I+1 “ RE+D) = T+1 Hp I—W
under the condition
(1.3) Ny;(n) —O(n®) for some 0—<e<1;
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here N, (n) denotes the number of incongruent solutions mod »n of f(x)=0 (mod n),
Nj(n)= (Nf(n))‘ and u(n) the Mébius function.
In the case of ¢(n) we have the well known result due to F. MERTENS, namely

(1.4) 2 0m) = ixz-i-O(xlogx)
n=x
thus in this special case the main terms of (1.1) and (1.4) agree but the error term in
(1.1) is not as good as that in (1.4).
Similarly, in [2] and [3], the first author introduced and studied the generalized
Dedekind -functions ¥¥(n), Y% (n) and Y§:f(n). He proved that under the
condition (1.3)

2» BON | o0 w7y

(1.5) ué; m(") I+l pk+1) * O(x
XML o 200 N (K
(1.6) ,,é: wm(n) T nglr H (’3‘3‘(" ) + O (x0t+1)
for every ¢ such that
(1.7 1::-6>max[s,1—k—1‘];

and with the condition that & of (1.3) is -:%,

(1.8) S ysi(n) = 2” i) | EGo

nsx vf-]- 1
where
O(x*) if vt(1—ue)=1

(1.9 E(x) = or (1 —ue)

O(x'+u0+uvte)  for every 0 <
if vt(l1—ue)=1.
Here gf:f(n) is the multiplicative arithmetical function defined by

(1.10) eri = IT (1) N7,
where p*||n means that p*|n and p**{n and

W) _ u(u—=1)...(u—a+1) [u]_ e ¥
[a] = o~ » o) = 1 for nonnegative integers
u and o.

In the case when f(x)=x, the functions ¥/ (n), Y% (n), and Y} (n) re-
duce respectively to ¥, (n), Y, (n), and Y ,(n) which were ‘itudled earlier by D.
SURYANARAYANA [6] as extensions of the Dedekind’s y-function ¥ (n) which has the
arithmetical form

¥ (n) = ng[w%],
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the product being extended over all prime divisors of n. In fact, ¥,(n)=y,(n)=
=y q)(n)=y(n). The estimates for error terms in his asymptotic formulae for
2 ¥, (n), Z Y (n), and 2' Y (n) turned out to be a little better than those of

(1 5), (1.6) and (1.8) in these spemal cases.

Also, it is known now that (1.3) always holds, & of course depending upon the
polynomial f. In fact, the second author and P. V. KRISHNAIAH [5] recently proved
that

Yo S

Nf(ﬂ) = A“’(")n *,
h being the degrre of f and A4 an absolute positive constant and w(n) the number of
distinct prime factors of n. Since w(n)=0 [lo;olg(%]’ (1.3) follows and thus the
asymptotic formulae given in (1.1), (1.5), (1.6), and (1.8) hold for every nonconstant
polynomial f.

In this paper, using entirely different arguments, we give proofs of the above
formulae with better estimates for the error terms.

2. Preliminaries. As before, f is a nonconstant polynomial with integer coeffi-
cients and h the degree of f. Let D be the g.c.d. of the coefficients of f and y(n) the
largest square free divisor of n. It is well known that N (n) is a multiplicative func-
tion of n, i.e., Ny(mn)=N;(m)Ns(n) if (m,n)=1. Let

2.1) ¢ = max {h, u},

u being the largest prime divisor of D.
We shall also need the following:

22 opam) = 2 p(dN}d),
(2.3) YR(n) = WZ_” u*(d)Nj(d") &',
(2.4 YN(n) = “Z; u2(d) Nj(d*) ",
(2.5) Yii(n) = ‘g’_ of:f (d)o*,
(2.6) o} (n) = p*(n) Nj(n®)
and

2.7 of:i(n) = ‘é ot (d)ef 10 (9).

Of these (2.2) is Corollary 1 of Theorem 2 in [1], (2.3) is an easy consequence of
2.15 of [2], (2.4) is (3) of 2.18 of [2], (2.6) is (2.9) of [3] and (2.5) and (2.7) are respec-
tively Theorems 2.2 and Lemma 2.1 of [3].

Lemma 2.1. For all n,

o y(n)

l’
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ProoF. By (2.1) we have N (p)=c for all primes p. Also it is known that
N;(p*) = p*"'N,(p) for all primes p and
all positive integers . The multiplicativity of N (n) gives the lemma.
Lemma 2.2. For positive integral k,
> k™ = O(x(log 2x)*~).

nsx

Proor. We use induction on k. First, we note
(2.8) (k+1)°™ = %‘ ke@,
dln

Clearly the functions appearing on both sides of (2.8) are positive and it is easily
seen that they are multiplicative and (2.8) holds when n=p* p a prime and « a
positive integer; thus (2.8) holds for all n.

The lemma is clearly true for k=1. Assuming its truth for the positive integer
k, we have, by (2.8),

Sk+1)W= 3 SkoD = 3 3 ko =

n=x n=xdé=n d=sxd=x/d

[éEx [ ] [108 __]k 1] 0 [x(log 2x)*-1 aﬂ ] O(x(log 2x)¥),

giving the truth of the lemma for k+1 and the proof is complete.
Lemma 2.3, As x—+<

(29) g'u!(n)N}(nk) = O(xl-l-(k—l)l(log 21)‘:'_1),
E(m)Nj(n*) _ [O((log 2x)) if t=1
- P aa {0(1), if 1=2
and
1 (n) Nf(n") (log 2x)*-1

PrOOF. By Lemmas 2.1 and 2.2, we have
ZHS(R)N}(HJ‘) = ZpS(n)n{k l)tclm(u) = x(t e chw(u) =, O(x1+(k—1)¢(log2x)r' 1)

n=x

and this proves (2.9). Now (2.10) and (2.11) follow from (2.9) by the partial summa-
tion theorem (cf. [4], Theorem 421).

Lemma 2.4, As x—+oo

(415 3 gt (n) = O(x*+ =" (log 2x)*~Y),
k() _ [0(Iog29), if =1
) P {0(1), if =2

and
oft(m) _ [ (log2x)*-!
(2.19) SaL" =0 [—?——]

vt+1
n=x N
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Proor. We use induction on u for proving (2.12). For u=1, (2.12) is clear in
virtue of (2.6) and (2.9). Now, assume (2.12) for u—1 where u=2 is an integer.
Then, by (2.7) and the induction hypothesis,

2 epi(n) = “é'x eri(d)ef"(0) = dée i (d) Z gt (0) =

nEx

@.15) —o| 3@ [-}]H""”'[log Tx]‘"""’"] .

d=x

=0 [x1+(v 1)t (log x)("'l)f'-l Z d?; Ey(dl)“

Now, by (2.6) and partial summation, we get
op:¢(n) e
Zireene = 0((og )
and hence (2.12) follows because of (2.15).

(2.13) and (2.14) follow from (2.12) by partial summation.
3. Main results.

Theorem 1.
O(x(logx)), for t=1
®(n) = o+l
G- & o) = ax +{0(x'), for t=2
where
u(n) Nf(n*) 1 N} (pY) }
3.2 - l-l-'l .g; PTCES | E | {I{l_ pHEED

and the product on the right is extended over all primes p.

ProoF. The series in the definition of « converges absolutely by (2.11) and the
general term of the series is a multiplicative function of n. Hence by the Euler’s
infinite product factorization theorem (cf. [4], Theorem 285) follows the equality
of the sum and product in (3.2).

Now, by (2.2), we obtain

2 of(n) = Z O'u(d)Nj(d") = Z:kﬂ(d)N}(d") Z"k o =

nsx =x! d=x/,

- Zoomn|(E] " trol2)) -

x*1 & u(d)Np(d") p? (d) Nj(d¥) i‘(d)j""['(ﬂ"‘)
N r+1 J;Z; dre+1) 10 x'+ld=.xlfk dke+1) ]+0 xidsxuk

and the result follows now by an application of (2.10) and (2.11).
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Theorem 2.
(3.3) > P (n) = pxi+? +{(07£;()1f>g ;)r), : _;orz t=1

n=x

where

2(n) Nj(n* 1 N,
(3.4) b= S = T {1+ pt{ff:,)}

ProoF. The proof is the same as that of Theorem 1 except that we use (2.3)
in place of (2.2).

Theorem 3.
(3.5) é’.p}f}(n) = yxml_'_{g((x;gogz:), ‘{:,; P
where
- wmNi@nY 1 NP
(3.6) t e kH—l ,,_21 o2 el ]’]{1_{_ £ }

Proor. We use (2.4) in place of (2.2) and the proof runs similar to that of
Theorem 1. We omit the details.

Theorem 4,
O(x"(logx)*), for t=1
u,v — vi+1
e (2 Vi) = ox +{O(x"’), for t>1
where
| o eni(n)
S vi+1 ,,Z; puttl C

ProOF. We use (2.5), (2.13) and (2.14) in place of (2.2), (2.10) and (2.11) and
proceed as in the proof of Theorem 1. We omit the details.
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