Iterative methods of order two and three for
computing inverse elements in Banach algebra
with identity

By ZOLTAN SZABO (Debrecen)

Abstract. Using the Banach’s theorems and some properties of the Fréchet derivatives of
nonlinear operators, proofs are given for theorems about the convergence and error estimates of
two iteration methods of order two and three for calculating inverse elements in Banach algebra
with identity.
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1. Extension of the quadratic method of Hotelling and Schultz

Let us consider the iterative method due to H. HOTELLING [1] and ScHULTZ [2]
for the inversion of a quadratic and nonsingular matrix A:

(1 1) {gﬂ a I—ABOQ
d ’ n = n—l(I+Cu—l)9 Cll — I_AB"; n= l, 2, sse

LE.

12) {B,,.,.1 =F8); n=0,1,.. where

F(B) = (2I—BA)B.
It is known that nl}_m B,=A7! if |Cyll<1 and 347

We try to extend this method in complex (or real) Banach algebra with unit
element and thereafter in chapter 2 to increase the rapidity of the method obtained.
For this reason let X be a real or complex Banach algebra with identity e (i.e. let

1) X be a Banach space over R (or C);

2) X be a linear algebra with identity e over R (or C);
3) =yl =]l - lIyll, x, yeX;

4) |lef=1).

Let a be an element of X having an inverse element @~'. Let us take an
arbitrary element x,€X and denote c,=e—ax,.
Let us consider the iteration

(1.3) {. Xy = Xp-1(+C4-1), p=€—ax,; n=1,2,..
ie.

XoprmFle): amO 1,2 ..
where

F(x) = x(2e—ax) = 2x — xax.
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Obviously, the element @~ is a fixed point of the iteration function F:
Fla™ ) =a7%

Lemma 1.1. The mapping F: X—~X defined by (1.3) on the whole Banach
algebra X with identity e is twice Fréchet differentiable in X and the Fréchet
differentials of F take the forms

F’(x)h = 2h—xah—hax,
(1.4) F"(x)(hy, hy) = —hyah,—h,ah,,
x, h, hy, hy€ X,
further
|F’(x)]| = |le—xal|+ |le—axl,

IF" ()| =2[a], x€X.
Proor. It follows from
F(x+h)—F(x) = 2(x+h)—(x+h)a(x+h)—2x+xax =
= 2h—xah—hax—hah; x, h¢X
that
|F(x+h)—F(x)—F'(x)h|| = ||hah| = || - |h]>.
Consequently, I}Ii"mus([lhll)=0 if one chooses
e([h]) = [a]-[Al,

therefore, according to [2] (pp. 15—18), the map F is Fréchet differentiable in x(€X)
and the value of its Fréchet differential F'(x)h is really equal to (1.4). Let us show
that the operator F”(x) is linear and bounded.

The operator F’(x) is additive and homogeneous because

F’(x)(hy+hy) = 2(hy+hy)—xa (hy+hg) —(hy+hy)ax =
= (2hy —xah, —hyax)+(2hy—xahy—hyax) = F'(x)hy+F’(x)hy; x, hy, ha€ X

and

F’(x)(4h) = 2(Ah)—xa(ih)—Ahax = A(2h—xah—hax) = AF'(x)h;
x, heX; A is a scalar.
F'(x) is bounded: |F'(x)|=M = |e—xal +|e—ax| for
|F’(x)h| = |(h—xah)+(h—hax)| = |(e—xa)h+h(e—ax)| = M||h|; x, heX.
In order to get the second Fréchet derivatives let’s consider the expression
F'(x+4x)—F'(x) = 2.—(x+4x)a.—.a(x+4x)—2.+xa.+.ax = — dxa.—.adx
We define the linear operation B(4x, .) in the following way:
B(4x,.) = —4xa.—.adx
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i.e. the value of the differential can be given as
B(hl, hg) — _hla}'g-hgahl; Ax, a, h]_, hsex.
Then the operator B is linear in h, and in h, too, further it is bounded:

1Bl = 2|al
because
|B(hy, ho)|l = |[hyahs| + |heahy|| = 2]a| « |hy] « [ .
Thus we have
|F’(x+4x)—F’'(x)—B(4x, .)| = 0.

In virtue of the point 2.3 of § 2, XVII in [3] and the uniqueness theorem of the
Fréchet derivatives ([2], pp. 15—16) we get F”(x)=BA. Qu.e.d.

Theorem 1.1. Let X be a real or complex Banach algebra with identity e and
let the element a€ X have an inverse element a=*. Let g¢€[0,1) be an arbitrary but
Jixed real number further let us take the set

G = {xcX||e—ax|+|e—xa]| = q}c X
and define the map F:G—X in such a manner:
F(x):= x(2e—ax), x€G.

Then the following assertions hold:
1° F has exactly one fixed point in G:

F(@™™) =a™2.
2° The sequence {x,} generated by the iteration formula
Xp+1 = F(xn); n=0,12,..

tends to a=' for an arbitrary x,€G.

3° x,—a"! EM P =il
—am] = 12l

("a priori** error estimate)
4° The real sequence {||x,—a=|}s=o is monotonously decreasing.

5° Ix,—a7] = |x—x-al; n=12...
if q=1/2 (“a posteriori” error estimate).
6° If x,#a~', nEN then the method is of order 2, i.e.

. Posi—a"
0= —a P
Proor. We shall apply the Banach’s fixed point theorem, therefore, we have to
show that the set G is non-empty, closed and convex, further, that F(G)cG and
F is contraction in G. Here

G#0 for a€q.

2D
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It is known that any normed algebra is also a topological algebra ([4], p. 175)
so the scalar multiplication, addition and multiplication are continuous operations.
The set G is closed due to the continuity of the norm.

We are going to show the convexity of G. Let x” and x” be arbitrary elements
of G, i.e.

le—ax’l +le—xa] = q
and
le—ax"| +|e—x"a| = q.
If 1€(0, 1) then
x=tx"+(1-0)xeG
since
le—ax| +|le—xa| =

= |te—tax"+(1—-f)e—(1—-0ax'|+|te—tx"a+(1-t)e—(1—1)x’a| =
= tle—ax"| +(1-0)|e—ax’| +t|le—x"al| +(1 -1)|e—x"a] =
= t(le—ax"| +|e—x"a])+(1 -0 (|le—ax’| +|e—x'a]) =

=tg+(1-1q = q.

(This can be done because X is a real or complex Banach algebra!)
F(»)€G for any arbitrary y€G because

le—aF(y)|+|e—F(y)a| = |(e—ay)+ayay—ay|+|(e—ya)+yaya—ya| =
= [(e—ay)*l+ll(e—ya)l = (le—ay|+|e—yal)* = q* = q.

We prove that F is a contraction in G. By virtue of lemma 1.1 there exists the
Fréchet derivative F'(x), x€X and the inequality

IF’(x)| = |le—xa| +]e—ax]
holds. If x€G then we can write

[F'(x)] = Sup |F'(x)h] = Sup [(le—xal +|e—ax]) [h]] =

= |e—xa| +|e—ax| = q.

Using the generalization of the mean value theorem of Lagrange in normed vector-
space ([2], pp. 28—29) and the convexity of the set G, we obtain that the mapping
F is a contraction in G:

.5 {nF(x)—F(y)n = | (x+30—2)[Ix -yl = qlx—»l;
: x, y€G; 9€(0, 1).

Now we apply the fixed point theorem of Banach and Caccioppoli ([2], pp. 42—43:
[3], pp. 510—511) thus the following assertions hold

1) 3! pEG: p = F(p);
(p=a! because a~'€G and a~'=F(a™"));
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2) the iteration sequence
Xp41=F(x,); n=0,1,2,...

tends to a~! for an arbitrary initial point x,€G;
3) the estimate
Ix—a~] =TI F—xl; n=012..
holds.
Since
I F(xo)—xoll = l[(e—Xoa)xo| = [e—x,a] - | xo]

q

Ixo] < [e=Xoal; n=0,1,....

xa—a=1 = 5

But one can prove a more efficient estimate, namely 3°. For this reason one takes an
arbitrary element x,£G and thereafter the sequences {c,} and {x,} generated by
(1.3). In virtue of (1.3) one writes

Cp=€—aX, = €—aXy_1(€+Co-1) = e—(e—Cp-)(e+C-) =ci_y; n=12,...
thus

Gy = =2 a=012....
For
le—ax,| = leal = [c|*" =¢* ~0 if n—+o
S0
lim ax, = e.
n-—=oco

One is going to show lim x,=a™, ie. ,“'E!. [x,—a=|=0. Since [cl|=g=<]1,

in virtue of a generalizatis;l.:)f another theorem of Banach ([3], pp. 139—140) there
exists (e—c,) ! and the inequalities
1

e |

le=e0™l = 1oy = 7

hold ([4], p. 177).
By help of (1.3) one can write

Xo = a~Y(ax)) = a~}(e—cy),
1L

Xo(e—cp)t=a™,
i.e.

Xo(e—cg)"la =e.
Then, for the element

u:= xo(e—cy)™?
the relation wa=e is valid.
On the other hand, by virtue of (1.3) one can write

au = axq(e—co)™! = axy(axy) ™t = e
thus
u=a1= x(e—cy™2.

2
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Consequently,
la] = 3] - lle—c) ] = 100
Using (1.3), it can be written
¢, = e—ax,
and
X,—a~l= —a7l¢,,

therefore one gets the error estimate 3°:

ra—at] = o~ el = 20" n=0,1,2,...
By virtue of (1.5), we can write
|%as2—a7Y| = |F(x,)—F(a™)| = g|x,—a7*|

which proves the assertion 4°.
In order to show 5° we take the inequalities

[xa—a~] = % —Xpsal +]X+2—a7] = gl X1 —x,] + 9] X, —a7*]; n€N.
So we can write that
(1-9)lIxy—a7| = gllxy—Xp-1lls
from which the assertion 5° follows:

q
1—g¢q

1/2

1
=3

This can be considered as an *‘a posteriori” error estimate.

At the point a~!' the method is of order two if and only if F(a™Y)=a™},
F'(a)=0, F’(a*)#0 [5]. Clearly, a~! is a fixed point of F. The linear operator
F’(a™!) is the O-operator because

IF’(a™)| = [le—xa| +]|e—ax|)cus-+ = 0.
Using (1.4) from lemma 1.1, we get
Fﬂ(a"l)(hl, ha) - _‘hlahg_hsahl

which does not vanish in general. Consequently, the method is quadratic.

l]xu_a_l" = lell_xn——l" = “xn_xn—lﬁ'

Qu.e.d.

2. An iterative procedure of order three for computing inverse element

Let us return to the real case: let X=R. The method described in the previous
chapter, is similarly quadratic as the Newton iteration. The question arises, whether
or not this procedure can be taken into consideration as a Newton method for zero
determination of some real function f. Of course, the answer is yes if one choses
f(x)=a—x"*, x#0 where a0 is an arbitrary but fixed real number.
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[ The form of our iteration function is F(x)=2x—ax? and the Newton iteration

tunction has the form N(x)=x-— f):g; Thus the function f in question satisfies
the differential equation

__JO)
. x—ax®= — 70
i.e.

dx adx dx
In f(x) =fax’—x [—f ax—1 —;]
Consequently
£ = const. X2 ]

This train of thoughts suggests the idea of increasing the speed of the method
in such a way: let us apply the Chebyshev iteration method of order three [5]

Xes1=@(x); n=Q,1,...
g fx) A7)
WOAF=FD ~ T®
to solve the equation f(x)=0. The iteration function ¢ has the form
@(x) = 3x—3ax*+a®x®

because f(x)=a—x"1.
From now let X be again an arbitrary real (or complex) Banach algebra with
identity. We are going to investigate the operator form of ¢.

Lemma 2.1. Let X be a Banach algebra with identity e and let a be an arbit-
rary element of X. Then the operator ¢: X—+X,

o(x) = x(3e — 3ax + axax)

is three times Fréchet differentiable in X and the Fréchet differentials of F have the
Sfollowing forms:

¢’ (x)h = 3h—3xah —3hax +xaxah +xahax+ haxax,
@”"(x)(hy, hy) = —3h,ahy—3hyah,+h,axahy+h,axah, +
+xah,ahy,+xahyah,+h,ah,ax+hyah,ax,
Q" (x)(hy, hy, hg) = hyahyahg+h,ahgah,+

+hsah,ahy+hyahgah, +hyah,ahy+hyahyahy;  x, h, hy, hg, hg€ X
Sfurther
lo’ )| = (Je—xa| +]e—ax]),

le”(¥)] = 2]al 2]e—xa| +]e—ax]),
lo” &) = 6[al*; x€X.
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Proor. For calculating ¢’ (x) we form the difference
@(x+h)—@(x) = 3h—3hah—3xah—3hax+hahah +hahax +haxah +xahah+
+xaxah+xahax +haxax.
We define the additive and homogeneous (i.e. linear) operator / in the following way:
Ih = 3h—3xah—3hax+xaxah+xahax+haxax.
The linear operator / is bounded for
17l = sup k]| =
1Al =1

sup |[(h—2xah+xaxah)+(h—hax—xah+xahax)+(h—2hax+haxax)| =

Tl =1
= sup [(e—xa)*h+(e—xa)h(e—ax)+h(e—ax)?| =
1h1 =1

B Wi [(le—xa|*+|e—xa| |e—ax]| +[e—ax]*) |h[] = (le—xa] +]e—ax]).

On the basis of the definition of the Fréchet differentiability ([2], [3]), the Fréchet
derivative of ¢ in x is /
(¢’(x) = | = 3e.—3xa.—3.ax+xaxa.+xa.ax+.axax)
because
le(x+h)—@(x)—Ih| = |hahah+hah(ax—e)+ha(xa—e)h+(xa—e)hah| =
= |h|(|hllal[lah] +|ax—e]| +2]xa—e]]) = [h]e(]|h])
and Il?}_los(llhll)=0.
In order to determine the bilinear operation ¢”(x) we build the difference
@' (x+4x)—¢'(x) = —3(x+4x)a.—3.a(x+4x)+(x+4x)a(x+4x)a.+
+(x+4x)a.a(x+4x)+.a(x+4x)a(x+4x)+3xa.+3.ax—xaxa.—xa.ax —
—.axax = —34xa.—-3.adx+ Axaxa.+xadxa.+xa.adx+ :
+dxa.ax+.axadx+.adxax+Axadxa.+4xa.adx+.adxadx

Let us take the linear operator b(4x,.)=—34xa.—3.adx+ Axaxa.+xadxa.+
+xa.adx+A4xa.ax+.axadx+.adxax. It is clear that b is linear in 4x too,
therefore, b is a bilinear operator in virtue of the point 2.3 of § 2, XVII, [3].

The second derivative of the mapping ¢ in x is b because

lo’(x+4x)— ¢’ (x)—bAx| = |(4dxa)* .+ Axa.adx +.(adx)?| =
= |4x]|a] |4x| |a.] +|4x] |a.] |l | 4x] +].al | 4x] |a] | 4x] =
= [4x|[|4x]a] 2]a.] +].a])] = [4x]e(|4x])

where “lill'ltl ns(]iAxl]) = (.
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Thus the second Fréchet differential of ¢ has the form
@"(x)(hy, hy) = —3hyahy—3hyahy +xah,ahy+xahyah, +
+hyaxahy+hyaxahy +hyahgax+hyah, ax.
The boundedness is evident for

lo")| = sup  [@"(x)(hy, hy)| = sup  |(xa—e)h,ah;+(xa—e)hyah, +
Ihyl = ihyll =1 Ithyll=lhyl =1

+hya(xa—e)hy+hya(xa—e)hy+h,ahy(ax —e)+hyah (ax—e)| =
= 2|a|(Je—ax] +2]e—xal).
If we define a 3 — linear operation ¢ as
t(4x, hy, hy) = hyadxahy,+h,ah,adx+hyah,adx--

+ hyadxahy + Axah,ahy + Axahgah,

then
[0"(x+4x) =" (x)—tAx](hy, hy) =

= @"(x+4x)(hy, he) —@" (x)(hy, hy) —1(4x, hy, hy) = 0; hy, h€ X.

Thus the bilinear operator
Q" (x+4x)— " (x)—t4x

s the bilinear O-operator, therefore, by taking &(]4x||)=0 the relations
0 =) | "(x+4x)— " (x)—14x| = || Ax|e(|4x]),
lim s e(|dx]) =0

Idxi -
are evidently satisfied. The 3-linear operator ¢ is bounded because
l#l = sup |hyahyahy+hyahyahy +

Uyl = Ayl =gl =1
+hyahyahs+hyahgah, +hgah,ahy+hsahsah,| = 6| al®.
Consequently, ¢@”(x)=¢ and the third Fréchet-differential of ¢ has the form
@” (x)(hy, hy, hg) = hyahyahs+h,ahgahy+
+hyahyahy+hyahgahy +hyah,ahy+hyahsahy;  x, hy, hy, hy€ X

which was to be proved.

Theorem 2.1, Let X,e,a,q and G denote the same as in the theorem 1.1.
Let us define the operator ¢:G—~X in such a manner:

¢(x) = x(3e—3ax+axax); x€G.

Then the following statements hold:
1° the mapping ¢ has the only fixed point a=* in G:

@) =a";
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2° the sequence {x,} generated by the iteration formula
Xiar =Pl ns01, .

converges to a~! for arbitrary x, from G;

3 lx,—a=| g-——l"’fl ¢ n=0,1,..
(““a priori” estimate);
4° the sequence
{lx,—a~}sze
is monotonously decreasing;

1A

| =

» I,—a~}| = |x,—x,1|; n=1,2,... if ¢

(“a posteriori” estimate);
6° the order of the convergence of the method is three:

: ]lxl+1—a—1"
-y e
if x,»#a=, n€EN.
ProorF. We have seen in the proof of the theorem 1.1 that the set G is closed,
convex and not empty. If x€G then

le—ap ()| +le—@(x)a]| = [(e—ax)®| +|(e—xa)?| =
= (le—ax|+|e—xa|]P =¢g*= g,
consequently ¢(G)CG.

In order to apply the fixed point theorem, we have only to show that the operator
@ is contraction in G. According to the lemma 2.1,

3¢'(x), x€X
and
o’ )l =(lle—xal| +[le—ax])*.
Therefore
le'@=¢"=gq

if x€G. We use the convexity of G and apply again the extension of the Lagrange
mean value theorem ([2], pp. 28—29) so we get

{!I(p(x)—qo(y)ll = |lo’(x+0(y—x)||Ix—»yl = qlx—yl,
x, yeG; 0©¢(0,1)

i.e. @ is a contraction.
Using the fixed point theorem of Banach and Caccioppoli ([2], pp. 42—43
and [3], pp. 510—511) it follows that

J10€G: o = @ ().

(x=a~! because a~'=¢(a"1)€G.)

@1
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2° For an arbitrary x,€G, the sequence {x,} generated by the iteration for-
mula x,,,=¢(x,); n=0,1,... tendstoa™%.

Let us prove the a priori error estimate 3°. The iterative procedure generated
by @ can be written in the following way:

Co = €—ax,;

(2'2) Xp41 = xn(e+cn+cz); Chy1 = €—0AX, 4y
n=012,....

Using induction we shall show that

(2.3) =t n=0,12...

For n=0 the statement is evident. Supposing (2.3) to be valid for k€[0,n]NZ,
we have to prove it for k=n+1.
In virtue of (2.2) one can write

Cat1 = €—AXyyy = e—aXy(e+c,+c;) = e—(e—c,)(e+c,+¢cp) = c3

which is equal to
(=

if one uses the inductive condition.
Let us follow the train of thoughts in the proof of the theorem 1.1. One can see
immediately that
limax,=e¢, lmx,=a"",
i 1ol
a’l = ——
o= =42
and
a5 20 g% n=0,12...
In virtue of (2.1) we have

|%es1—a7 = lo(x)—@ (@) = g]x,—a"?|; n=0,1,2,...

therefore 4° holds.

The estimate 5° can be proved as in the theorem 1.1.

At the point @™ our procedure is of order three if and only if the following
relations hold:

p@=a", ¢'(@a)=0 ¢"@MN=0, ¢"@H#0 (s[5

The first equality is evident.
It arises from the lemma 2.1 that

o’(aVh=0; heX
and
@"(a=)(hy, hy) = 0;  hy, he€ X.

‘P”(a_l)(hl ’ h!s hﬂ)

But the value of
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does not vanish in general, therefore, the 3-linear operator ¢”(a~!) is not equal
to the O-operator.
Qu.e.d.

The following applications can be mentioned.
I. Determination of inverse matrices in the noncommutative Banach algebra
of kX k matrices with real or complex entries.
II. Building the inverse operator of a linear and bounded operator defined

in a (real or complex) Banach space.
III. Calculation of inverse operator of a linear integral operator in the normed
algebra of continuous functionals defined on compact topological spaces.
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