## On the Lebesgue function on infinite interval, II.

By S. A. N. ENEDUANYA (Minna)

1. In this paper we shall continue our previous investigations [1] and obtain a bound for the Lebesgue function on the interval  $(-\infty, +\infty)$ . Moreover, we shall establish a convergence theorem for the Lagrange interpolation on this interval. Let a weight function p(x) be given such that

(1.1) 
$$\int_{-\infty}^{\infty} x^k p(x) dx < \infty \quad (k = 0, 1, 2, ...),$$

then there exists one and only one system of orthonormal polynomials  $\{\omega_n(x)\}_{n=0}^{\infty}$  such that  $\omega_n(x)$  has exactly n simple real roots and

$$(1.2) -\infty < x_n < x_{n-1} < \dots < x_{\nu+1} < x_{\nu} < \dots < x_2 < x_1 < +\infty.$$

For the orthonormal Hermite polynomials defining the n-th polynomial as

(1.3) 
$$\omega_n^*(x) = \overline{H}_n(x) = \frac{(-1)^n}{\sqrt{2^n n! \sqrt{\pi}}} e^{x^2} \{e^{-x^2}\}^{(n)}$$

the weight function is  $p(x) = e^{-x^2}$ .

We define the Lebesgue function using the roots (1.2)

(1.4) 
$$\lambda_n(x) \stackrel{\text{def}}{=} \sum_{v=1}^n |l_v(x)|$$

where

(1.5) 
$$l_{\nu}(x) = \frac{\omega_n(x)}{\omega'_n(x_{\nu})(x - x_{\nu})}.$$

Grünwald and Turán [2] proved that given a system of orthonormal polynomials  $\{\overline{\omega}_n(x)\}_{n=0}^{\infty}$  with weight functions  $p(x) \ge m > 0$  on the interval [-1, 1], the Lebesgue function using the roots of  $\overline{\omega}_n(x)$  can be estimated thus:

$$\lambda_n(x) \leq c_1 \sqrt{n}, \quad x \in (-1, 1)$$

and

$$\lambda_n(x) \leq c_2 n \qquad x \in [-1, 1]$$

where  $c_1$  and  $c_2$  are constants independent of n.

In the first of this series [1] we extend our investigation to the interval  $[0, \infty)$  and the bound

$$\lambda_n(x) = \begin{cases} c_3 x^{(a/2) - (1/4)} n^{1/4}, & \alpha \ge -\frac{1}{2}, & \text{for fixed} & x \in (0, \infty), \\ c_4 n^{1/4}, & -1 < \alpha \le -\frac{1}{2}, & \text{for fixed} & x \in [0, \infty) \end{cases}$$

if the weight function satisfy the condition  $p(x)x^{-\alpha}e^x \ge m > 0$ . The  $c_3$  and  $c_4$  constants are independent of x and n.

We now state the following

Theorem 1. Let  $p(x)e^{x^2} \ge m > 0$  and

$$\int_{-\infty}^{\infty} x^k p(x) dx < \infty \quad (k = 0, 1, 2, \ldots),$$

then the Lebesgue function, using the roots of  $\omega_n(x)$ 

$$\lambda_n(x) = O(1)n^{1/4}, \quad x \in [-A, A]$$

where A is an arbitrary fixed real number.

Remark. If  $p(x)=e^{-x^2}$ , then m=1.

2. The following results, the proofs of which may be found similar to those in [1], are true.

(a) The Cotes numbers

(2.1) 
$$\int_{-\infty}^{\infty} l_{\nu}(x) p(x) dx = \int_{-\infty}^{\infty} l_{\nu}(x)^{2} p(x) dx = \mu_{\nu}$$

$$(\nu = 1, 2, ..., n; n = 1, 2, 3, ...).$$

(b) From the orthogonality of  $\{\omega_n(x)\}_{n=0}^{\infty}$ 

(2.2) 
$$\int_{-\infty}^{\infty} l_i(x) l_j(x) p(x) dx = \begin{cases} 0, & i \neq j \\ \mu_i, & i = j \end{cases}$$

$$(i, j = 1, 2, ..., n; n = 1, 2, 3, ...).$$

Using (2.1), (2.2) and the fact that

$$\sum_{\nu=1}^{n} l_{\nu}(x) \equiv 1 \quad (n = 1, 2, 3, ...),$$

we have

(2.3) 
$$\int_{-\infty}^{\infty} \left\{ \sum_{\nu=1}^{n} l_{\nu}(x) \right\}^{2} p(x) dx = \int_{-\infty}^{\infty} \left\{ \sum_{\nu=1}^{n} l_{\nu}^{2}(x) \right\} p(x) dx = \int_{-\infty}^{\infty} \left\{ \sum_{\nu=1}^{n} l_{\nu}(x) \right\} p(x) dx = \int_{-\infty}^{\infty} p(x) dx < \infty.$$

Let us define  $\varepsilon_v \stackrel{\text{def}}{=} \text{sign} \{l_v(x_0)\}\$ , where  $x_0 \ge 0$  is an arbitrary fixed value and let

(2.4) 
$$\Psi_n(x) = \sum_{\nu=1}^n \varepsilon_{\nu} l_{\nu}(x).$$

The polynomial  $\Psi_n(x)$  is of degree n-1 and can be expanded by the Fourier series of orthonormal Hermite polynomials  $\{\omega_n^*(x)\}$ . Hence from the inequality Cauchy's we get

(2.5) 
$$[\Psi_n(x)]^2 = \left[\sum_{i=0}^{n-1} c_i \omega_i^*(x)\right]^2 \le \sum_{i=0}^{n-1} c_i^2 \sum_{i=0}^{n-1} [\omega_i^*(x)]^2.$$

Thus, and from (2.4), (2.3) we have

(2.6) 
$$\int_{-\infty}^{\infty} [\Psi_n(x)]^2 e^{-x^2} dx = \sum_{i=0}^{n-1} c_i^2 = \int_{-\infty}^{\infty} \left\{ \sum_{\nu=1}^n \varepsilon_{\nu} l_{\nu}(x) \right\}^2 e^{-x^2} dx \le \frac{1}{m} \int_{-\infty}^{\infty} \left\{ \sum_{\nu=1}^{\nu} \varepsilon_{\nu} l_{\nu}(x) \right\}^2 p(x) dx = \frac{1}{m} \int_{-\infty}^{\infty} p(x) dx < \infty.$$

This value which is also independent of n.

From (2.5) and (2.6) we get

(2.7) 
$$[\Psi_n(x)]^2 = O(1) \sum_{i=0}^{n-1} [\omega_i^*(x)]^2.$$

Considering [3] (formulas (5.5.1), (5.6.1), (7.6.9) and (7.6.10)) it is easy to verify that

$$|\omega_i^*(x)| = O(1)(i+1)^{-1/4}, \quad -A \le x \le A$$

where A is an arbitrary real number.

From (2.7) and (2.8) the following inequality

(2.9) 
$$[\Psi_n(x)]^2 \leq O(1) n^{1/2}, \quad -A \leq x \leq A$$

holds.

Hence, from (2.4) and (2.9) we have

$$|\Psi_n(x_0)| = \lambda_n(x_0) = O(1)n^{1/4}, \quad -A \le x_0 \le A.$$

Thus, the theorem is proved, because  $x_0$  is an arbitrary value.

3. We shall in this section consider the Lagrange interpolation polynomial of a continuous function f(x) on the interval  $(-\infty, \infty)$ .

It is interesting at this point to consider a function

(3.1) 
$$f(x) = e^{ax^2} \varphi(x) \quad (a > 0, -\infty < x < \infty)$$

where  $\varphi(x) \in \operatorname{Lip}_{M} \gamma$ ,  $\frac{1}{2} < \gamma \le 1$ .

Let us define polynomials  $L_n(x, f)$  of degree n-1, satisfying the following equalities on the roots of Hermite polynomials

(3.2) 
$$L_n(x_v; f) = e^{-ax_v^2} f(x_v) = \varphi(x_v) = y_v$$
$$(v = 1, 2, 3, ..., n, n = 1, 2, ...).$$

The polynomials  $L_n(x; f)$  have the explicit forms

(3.3) 
$$L_n(x; f) = \sum_{\nu=1}^n y_{\nu} l_{\nu}(x)$$

where

(3.4) 
$$l_{\nu}(x) = \frac{\omega_{n}^{*}(x)}{\omega_{n}^{*'}(x_{\nu})(x-x_{\nu})}.$$

From [3] (formula (5.6.1)) we have, if n is even

$$(3.5) l_{\nu}(x) = \frac{\omega_{n}^{*}(x)}{\omega_{n}^{*'}(x_{\nu})(x-x_{\nu})} = \frac{L_{n/2}^{(-1/2)}(x^{2})}{2x_{\nu}L_{n/2}^{(-1/2)'}(x_{\nu}^{2})(x-x_{\nu})} (\nu = 1, 2, ..., n)$$

and if n is odd

$$(3.6) l_{\nu}(x) = \frac{\omega_{n}^{*}(x)}{\omega_{n}^{*'}(x_{\nu})(x-x_{\nu})} = \frac{xL_{(n-1)/2}^{(1/2)}(x^{2})}{2x_{\nu}^{2}L_{(n-1)/2}^{(1/2)'}(x_{\nu}^{2})(x-x_{\nu})} (\nu = 1, 2, ..., n)$$

where  $L_k^{(\alpha)}(x)$  is the polynomial Laguerre's.

We shall now prove the following statement.

**Theorem 2.** If f(x) satisfies the condition (3.1), then the inequalities

$$|f(x)-e^{ax^2}L_n(x; f)| \le O(1)n^{(1/4)-(\gamma/2)}, x \in [-A, A]$$

hold where A is an arbitrary fixed real number.

PROOF. Let  $x_n$  denote the roots of polynomials  $\omega_n^*(x)$ , then the following inequalities are true (SZEGŐ [3])

(3.7) 
$$c_1 \frac{v}{\sqrt{n}} < x_v < c_2 \frac{v}{\sqrt{n}} \quad \left(0 \le v \le \left[\frac{n}{2}\right]\right)$$

and  $x_v = -x_{n-v+1}$ , if  $\left[\frac{n}{2}\right] + 1 \le v \le n$ , where  $c_1$  and  $c_2$  constants are independent of v and n.

Let  $\varphi(x) \in \text{Lip}_M \gamma$ ,  $\frac{1}{2} < \gamma \le 1$ , and  $x \in [-x_{\lfloor n/2 \rfloor}, x_{\lfloor n/2 \rfloor}]$ , then by using [1] it is easy to verify that there exists a polynomial  $Q_n(x; \varphi)$  of degree n-1, for which the relations

$$|Q_n(x;\varphi)-\varphi(x)|=O(1)n^{-\gamma/2}$$

hold.

It is well known that

(3.9) 
$$Q_n(x; \varphi) \equiv \sum_{\nu=1}^n Q_n(x_{\nu}; \varphi) l_{\nu}(x)$$

is true.

From (3.9), (3.8) and (3.5) we have, that for  $x \in [-A, A]$ , n even

$$|\varphi(x) - L_n(x; \varphi)| \le |\varphi(x) - Q_n(x; \varphi)| + \sum_{\nu=1}^n |Q_n(x_\nu; \varphi) - \varphi(x_\nu)| |l_\nu(x)| \le (3.10)$$

$$\leq O(1)n^{-\gamma/2} + O(1)n^{-\gamma/2} \sum_{0 \leq x_{\nu} \leq 2A} |l_{\nu}(x)| + O(1)n^{-\gamma/2} \sum_{x_{\nu} > 2A} |L_{n/2}^{(-1/2)}(x^2)| |L_{n/2}^{(-1/2)'}(x_{\nu}^2)|^{-1}.$$

The following inequalities are taken from Szegő [3] for  $x \in [-A, A]$ 

(3.11) 
$$\sum_{\nu=1}^{n} |L_n^{(\alpha)'}(x_\nu^2)|^{-1} \le \sqrt{n} \left\{ \sum_{\nu=1}^{n} [L_n^{(\alpha)'}(x_\nu^2)]^{-2} \right\}^{1/2} = O(1) n^{(1/2) - (\alpha/2)}$$

and

$$|L_{n/2}^{(-1/2)}(x^2)| = O(1)n^{-1/2}, \quad |xL_{(n-1)/2}^{(1/2)}(x^2)| = O(1).$$

Using (3.1), Theorem 1, (3.10), (3.12) and (3.11) we get for  $x \in [-A, A]$ , if n is even

(3.13) 
$$|f(x) - e^{ax^2} L_n(x; f)| = e^{ax^2} |\varphi(x) - L_n(x; \varphi)| = O(1) n^{(1/4) - (\alpha/2)}$$

$$(n = 1, 2, 3, ...).$$

These relations are also true, if n is odd. The proof is similar to that of (3.13). Thus Theorem 2 is proved.

## References

- S. A. N. ENEDUANYA, On Lebesgue function on infinite interval, I. Publ. Math. (Debrecen). 31.
   G. GRÜNWALD—P. TURÁN, Über Interpolation, Annali della Scuola Sup. di Pisa (2), 7 (1938), 137—146
- [3] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Coll., XXIII, 1959.

S. A. N. ENEDUANYA DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

(Received November 11, 1983.)