On finite groups with four independent generators three
of which being of odd prime order

By K. R. YACOUB (Trieste)

Finite groups with two independent generators have been widely studied by
several authors in the last three decades. Later on the author studied finite groups
with three independent generators when two of these generators have given orders

(11, [2].

It is the object of the present paper to study the structure of finite groups with
four generators three of which have the same odd prime order p. Throughout this
paper, the symbol p is used for an odd prime and congruences without explicit
modulus are considered to be taken mod p. The symbol e is used throughout to
denote the identity element of the group unless otherwise stated.

§ 1. Preliminaries

Theorem 1. Finite groups with three independent generators exist when two of
the generators have the same odd prime order p. Such groups, denoted by H,, H,
and Hj, have the defining relations

H;: {a,b,c; a®"=b?"=c?=e¢,ab=Dba",ac=ca’, bc=cb}; rP=s"=1

(mod m),
Hy: {a,bic; o" =0 = = ¢, ab=bd, ac= ", bo.=cb}; uEl2, ..., p—1);
kim, klr—1, r?=1 (mod m), k being the order of u mod p,
Hy: {0,b,¢; 6" =0 =c"=¢, ab = b"a, ac = c%a, bc=cb}; u,vE(2, ..., p—1};
klm,k'\m,k and k' being the orders of u and v mod p.

Proor. The proof of this theorem was given in 1964 by the author [1].

Corollary 1. The only finite group with three indeperdent generators having the
same order p is an Abelian group.

For if we take m=p in H,, we have
=1, s»=1 (modp)
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which, on using Fermat’s Theorem, imply directly r=s=1 (mod p) and H, will
be an Abelian group in this case.

But if we take m=p in H, we have k|p which if we remember that k divides
also p—1 implies at once k=1. Thus w=1 which leads to a contradiction as
u€{2,...,p—1}. Hence no group of the type H; exists when m=p. Similar argu-
ment applies for H; when m=p. This completes the proof.

§ 2. Description of the problem
Let G be a finite group with four independent generators a, b, ¢ and d of or-
ders m (arbitrary), p, p, p respectively. Then we have
=bP=cF=d"=c

By the above corollary, the subgroup {b, ¢,d} is an Abelian group of order p®. But the
subgroups {a, b, ¢}, {a, b, d} and {a, ¢, d} may be of the types H, or H, or H; descri-
bed in the above theorem. Thus ten cases may arise and may be listed in the following
table, in case they exist.

Table of expected types of groups

Type of Type of Type of Type of

lﬂﬂ bv C} {a! b9 d} {ﬂ', ¢, d} G= {al b' c, d}
H, H, H, T(1,1,1)
H, H, H, 7(1,1,2)
H, H, H, T(1,1,3)
H; H3 H‘ T(]I 2! 2)
H, H, H, 72,22
H, H, H, T3,2,2)
H, Hy H, T(1,3,3)
H, H, H, N2.33
H, H, H, T(3,3,3)
H, H, H, T(1,2,3)

REeMARK. It should be remarked that other types may arise, but they are not
actually distinct from the above types. For example the type T(2, 2, 1) which arises
when {a,b,c} and {a, b,d} are of the same type H, while {a,c,d} is of the
type H,. This is the same type 7'(1, 2, 2) if we just interchange the two generators b
and d which already have the same order p.

§ 3. Non-existence of certain types

Theorem 2. No group of the type T(1, 1, 2) or T(1, 1, 3) exists.

Proor. For if a group of the type T(l,1,2) exists, then the two subgroups
{a, b, ¢} and {a, b, d} will be of the same type H, while the subgroup {a, ¢, d} will
be of the type H,. By Theorem 1, we thus have
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for {a, b, c}: ab = ba", ac = ca’, be = cb,
for {a,b,d}: ab = ba", ad = da', bd = db,
for {a,c,d}: ac=ca', ad=d", cd =dc; uc{2,...,p—1}
for suitable parameter values of r, s and ¢. Thus
ad = da', ad = d“a

which leads to a contradiction as w€{2,...,p—1}. Hence no group of the type
T(1, 1, 2) exists. A similar argument applies for the type 7'(1, 1, 3).

Theorem 3. No group of the type T(2, 2, 2) exists.
For if a group of the type 7'(2, 2, 2) exists, then the three subgroups {a, b, ¢}, {a, b, d}
and {a, ¢, d} will all be of the same type H,. By Theorem 1, we have

for {a,b,c): ab=ba", ac =c"a, bc= b,
for {a,b,d}: ab = ba", ad = d°a, bd = db,
for {a,c,d}): dc=ca’, ad=d', ©cd=de,
for suitable r, s and where u,v€{2,...,p—1}. Thus we have
ac = c%a = ca*

which again leads to a contradiction as u€{2,...,p—1}. Hence no group of the
type T(2, 2, 2) exists.

Theorem 4. No group of the types T(1, 3, 3) or T(2, 3, 3) exists.
For the type T'(1, 3, 3), we have by Theorem 1

for {a, b,c} (being of the type H,) ab = ba’", ac = ca*
for {a,b,d} (being of the type H;) ab = b'a, ad = d’a

where u,v€{2, ...,p—1} and the contradiction is obvious. A similar contradiction
arises if the type T'(2, 3, 3) exists.

Theorem 5. No group of the type T(1, 2, 3) exists.
For such a type, we have

for {a,b,c} (being of the type H,) ab = ba", ac = ca’,
for {a, b,d} (being of the type H,) ab = ba", ad = d’a,
for {a,c,d} (being of the type H;) ac = c'a, ad = d’a
where u,v€{2,...,p—1}. A direct contradiction shows that no group of the type
T(1, 2, 3) can exist.
Theorems 2—35 show that it remains to discuss the existence of just four types
namely 7'(1, 1, 1), T(1,2,2,) T(3, 3, 3) and T(3, 2, 2).
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Theorem 6. If there is a group G of the type T(1, 1, 1), then it has the defining
relations

(1) G:{a,bc,d; a" =b?=c’=d’ =e, ab = ba", ac = ca’, ad = da',

bc = ¢b, bd = db, cd = dc},
where

2) rP=s=r=1 (modm).
Conversely, if r,s and t satisfy (2), then the group G generated by a,b,c
and d with the defining relations (1) is of the desired type.

ProOOF. Assume the existence of a group G of the type 7'(1,1,1). Then the
subgroups {a, b, c}, {a, b, d} and {a, c, d}, being all of the type H, have by Theorem 1
the defining relations

{a,b,c}: a™" =bP=c?P=e¢, ab=Dba", ac=ca*, bc=ch; rP=s"=1

(mod m),

{a,b,d}: a" =b? =dP=e¢, ab=ba", ad=da', bd=db; rP=r=1
(mod m),

{a,c,d}: a" =" =d’=e, ac=ca’, ad=da", cd=dc; s =1=1
(mod m).

Thus we have shown that (1) and (2) are necessary.

For the converse, lct K be the system of all formal quadruples [x, y, z, w] where
x€{0,1,...,m—1} and y,z,w€e{0,1,...,p—1}.

In this system we define multiplication by means of the formulae

{x’ Y, Z, w][x', y’s Z', W’] - [x”: y”: Z”, W”]
where
x"=rs¥™"x+x" (mod m),
and
"=y+y, 2"=z+7, w=w+w (modp).

It shoud be remembered that throughout the paper, all congruences without explicit
modulus are taken mod p. This multiplication is associative, for
(dx, », z, Wilx’, ¥, 2, wDIx", y", 2", w"] =
=[x +x, y+y', z4+ 2, w+W][x", ¥y, 2%, w"] =
= [P's" ™ (Vs x+X)+x", 0 +Y)+Y, E+2) 27, (w+w)+w”] =
= [P e L (P ST X +x7), y+ (O + ), 2+ +2), wH (W wT)] =
=[x, y, z, W[’ s ' xX' +x", y'+y", 2+ 2", W +w"] =

- [x: Vs Z, w]([x', ,V’, Z'; W'][x”s y”s Z”, W”D°
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Also ¢ =[0,0, 0, 0] is the unit element for this multiplication and [—rP~¥s?~%P~¥x,
p—y,p—2z,p—w] is the inverse of [x, y, z, w], in virtue of (2). Therefore X is a
group. Moreover if

a=[1,000} ¥=00,100], ¢=000,10, d=[00,0,1]
one can easily show that
alm = blp — C’F — dlp — e’, b!’c’ = Cfbl’ bfdl = d’bl’ c’dl — d.‘c!'

Also
a’b’=11,0,0,0][0,1,0,0] = [r, 1,0,0] = [0, 1, 0, 0][r, 0, 0, O] = b’a”,

a’¢’ =1,0,0,0][0,0,1,0] = [5,0,1,0] = [0, 0, 1, 0][s, 0, 0, 0] = ¢’a”,
a’'d =[1,0,0,0][0,0,0,1] = [1,0,0, 1] = [0, 0, 0, 1][¢, 0, 0, 0] = d’a™.
Thus corresponding to the defining relations of G
am"=bP=c?P=d?=¢€, a'b’=ba", a'c’=ca"® a'd =da"
b'e’ =¢c'b, bd =d'b, d =d¢.
From this we see that the group K is a homomorphic image of G. But as the order

of K is p* m and the order of G is at most p*m, they have the same order and are iso-
morphic. This proves the existence of a group G of the desired type.

Theorem 7. If there is a group G of the type T(1,2,2), then it has the defining
relations

3) G:{a,bcd;a"=0=c"=0d"=¢e,ab=ba,ac = ca’, ad = d"a,
be = ¢b, bd = db, ¢d = dc.},

with u€{2,3,...,p—1} and

4) rr=s?=1 (modm),

(5) klm, klr—1, kls—1.

Conversely, if r,s,and u satisfy (4) and (5), then the group G generated by
a,b,c and d with the defining relations (3) is of the desired type.

ProoF. Assume the existence of a group G of the type T'(1,2,2). Then the
subgroup {a, b, ¢} is of the type H, while the two subgroups {a, b, d} and {a, ¢, d}
are both of the type H,. Then by Theorem 1, we have

a"=bP =cP=e, ab=>ba", ac=ca’®, bc=cbh; rP=s>=1 (modm)
a"=b"=d’=e, ab=D>ba", ad =d"a, bd =db; uc{2,3,..., p—1}
"= =dP=¢, ac=ca’, ad =d%a, cd=de
where for the last two subgroups, we have respectively
rP =1 (modm), klm, klr—1 and s*=1 (modm), klm, k|s—1
k being the order of ¥ mod p. Thus we have shown that (3), (4), (5) are necessary.
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For the converse, let K be the same system of all formal quadruples [x, y, z, w]
used in the previous theorem with a new multiplication formula

[x’ y’ z, Iw’][xl'l’ y!’ z” w'] = [x”! y”! z”’ w"]
where
x"=rs"x+x" (modm)

y'=y+y, 2" =z+7, w=w+u'w’ (mod p).

Now if we observe that k is the order of ¥ mod p and that k|r—1, kls—1 it follows
that

(6) W=u w=u (modp) and w™* =u (modp)
for all natural numbers A, . This multiplication is associative, for

([x, », z, wllx', ¥', 2, wDIx", 37, 2", W] =
= [s¥x+x, y+y, z+2, w+ww][x", ¥y, 2", w"] =
= [P (7 s¥x+x)+x", O+ )+, (+2)+ 2", w+ 1w +uiw”]
X=rs"x+x, ¥ =u*** (modp) using (6)
= [T x4 r'sT X X7, y+ ' +Y), 2+ +27), w+ (W +uFw"),
=[x, y, z, WI[r"'s*'x’ +x", y' +3", 2’ + 2", w +u¥w’],
= [x, y, z, w](I¥', ', 2/, W][x*, ", 2*, w*].

Also ¢=[0,0,0,0] is the unit element for this multiplication and [—r"~7s"~%x,
p—Yy,p—z, —u™"*w] is the inverse of [x, y, z, w] in virtue of

r’f=1,s»=1 (modm) and " =1, =u, v*=u (modp)

as klm, klr—1, k|ls—1 (k being the order of u mod p). Therefore the system K is a
group of order p*m.

Moreover, if a’=[1,0,0, 0], ¥’=[0, 1,0, 0], ¢’=[0, 0, 1, 0], &’=[0, 0, 0, 1] then,
according to the defining relations of G, one can easily show that

R ==t d? =, We=&l, Vad=d0; 4 =8¢
a’t’ = b'a”, a'd =ca”® ada'd =d"™’.
For the last three relations, we have in fact
a’b’ =1[1,0,0,0]0,1,0,0] =[r,1,0,0] = [0, 1,0,0][r, 0,0,0] = b’a”,
a’¢ =1[1,0,0,0][0,0,1,0] = [5,0,1,0] = [0, 0, 1, 0][s, 0, 0, 0] = c"a™,
a'd =[1,0,0,0][0,0,0,1] =[1,0,0,2] = [0, 0,0, z][1, 0,0, 0] = d"a’.

Therefore the group K is a homomorphic image of G of order p®m. But as the order
of G is at most p®m, they have the same order and are isomorphic. This shows that
a group G of the required type exists.



On finite groups with four independent generators three ... 177

Theorem 8. If a group G of the type T(3, 3, 3) exists, then it has the defining
relations
@) a"=bP=cP=dP=e, ab=Db"a, ac=c%a, ad = da,

bc =c¢b, bd =db, c¢d = de,

with u,v,t€{2,3, ...,p—1} and
®) kim, K'|m, k"|m,
where k,k’ and k" are the orders of u,v and t mod p respectively. Conversely,

if uyv and 1€{2,3,...,p—1} and if k,k’ and k" satisfy (8), then the group G
generated by a,b,c and d with the defining relations (7) is of the required type.

Proor. The necessity of (7) and (8) is direct and can be established similarly
as before. For the converse, we use the following multiplication formulae

[x, y, z, w][x’, Y, C w]=[x" )" 2" w"]
with
x”"=x+x' (mod m),
y'=y+ury', 27 = z40*2', w= w4+ (mod p)

in the system K of formal quadruples [x, y, z, w] of the previous theorems. The
proof follows similar lines and may be omitted.

Theorem 9. If there is a group G of the type T(3,2,2), then it has the defining
relations
9) a"=bP=c?P=d?=e, ab=b"a, ac = c%a, ad = da’,

be=ch, bd =db, cd = de,

with u,v€{2,3, ...,p—1} and
(10) klm, k'lm, klr—1, Kl|r—1,
k and k' being the orders of u and v mod p respectively.

Conversely if u,v and r satisfy (10), then the group G generated by a,b,c
and d with the defining relations (9) is of the desired type.

The necessity of the conditions is obvious. For the converse, we use the same

system K of formal quadruples [x, y, z, w] but with the formula
[x, y, z, wllx', y', 2/, w'] = [x7, y", 2", w”]

where

x"=rx+x" (modm), y” = y+u*y’, 2’ = z+v"2', w = w+w (mod p).
The associativity of multiplication follows directly if we remark that

klr—1, k'lr—1 and ' =u, "  =v (mod p).

Also €'=[0, 0, 0, 0] is the unit element for this multiplication and [ —r?—%x, —u”~*y,
—vP~*z, p—w] is the inverse of [x, y, z, w]. Hence the system K is a group of order

p*m, which proves the existence of a group G of the required type by following
similar lines as in the previous theorems.
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CoNcLUSION. Theorems 6—9 show that finite groups with four independent
generators a, b, ¢ and d exist when three of the generators have the same odd prime
order p. The group of Theorem 6 with r=s=t¢=1 (mod m) is in fact the direct

product of {a}, {b}, {c} and {d}.
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