Lattice theoretical characterizations of quantum probability space I

By I. G. KALMÁR (Debrecen)

1. The notion of quantum probability space was introduced by SUPPES [6], and later it was investigated by many authors, for example by GUDDER [2].

Let Ω be a nonempty set and let S_{σ} be a collection of its subsets which satisfy

- (i) $\Omega \in S_{\sigma}$
- (ii) if $A \in S_{\sigma}$, then $A^{c} = \Omega \setminus A \in S_{\sigma}$
- (iii) if $A_i \in S_\sigma$ (i = 1, 2, ...), $A_i \cap A_j = \emptyset$ $(i \neq j)$, then $\bigcup_i A_i \in S_\sigma$

Then we call S_{σ} a σ -class, and (Ω, S_{σ}, p) is called a *quantum probability space*, if p is a nonnegative set function on S_{σ} such that $p(\Omega)=1$, and $p(\bigcup_{i} A_{i})=\sum_{i} p(A_{i})$ if $A_{i}\cap A_{j}=\emptyset$ $(i\neq j)$.

It is easy to see that quantum probability space is more general than classical probability space, but less general than the usual quantum logic. So the first question that arises: which orthomodular σ -poset (partially ordered set) will be isomorphic to a σ -class?

A simple theorem of Gudder gives a characterization of this type of orthomodular σ -poset with the help of two-valued measures on it. See, for example [3], Theorem 3.28. In this paper we shall give lattice theoretical characterizations of those orthomodular lattices that are isomorphic to a class S of a nonempty set Ω with the following properties:

- (i) $\Omega \in S$
- (ii) if $A \in S$, then $A^c = \Omega \setminus A \in S$
- (iii) if $A_1, A_2 \in S$, $A_1 \cap A_2 = \emptyset$, then $A_1 \cup A_2 \in S$

Such an S will be called an n-class.*)

First we recall the basic notions that we shall use.

2. Let $\mathcal{L}(\vee, \wedge, \perp, 0, 1)$ be a complemented lattice with least and greatest elements 0 an 1, respectively. If the complementation \perp satisfies also (i) $(a^{\perp})^{\perp} = a \forall a \in \mathcal{L}$, and (ii) $b^{\perp} \leq a^{\perp}$ if $a \leq b$, $a, b \in \mathcal{L}$, then we call \perp orthocomplementa-

^{*)} The isomorphism to a σ -class will be examined in Part II.

180 I. G. Kalmár

tion and \mathcal{L} orthocomplemented lattice. We remark that the De Morgan laws are valid in every orthocomplemented lattice.

A complemented lattice is weakly modular if

$$a \lor b = a \lor (a \bot \land (a \lor b))$$
 for all $a, b \in \mathcal{L}$.

An orthomodular lattice is an orthocomplemented and weakly modular lattice. The relation of orthogonality (\bot) for elements a,b of an orthocomplemented lattice is defined by $a \bot b$ if $a \le b^\bot$. For elements a,b of an orthocomplemented lattice $\mathscr L$ we say that they are compatible, in symbols $a \leftrightarrow b$, if there exists a Boolean subalgebra in $\mathscr L$ containing a and b.

In the following lemma we collected the most important properties of compatibility.

Lemma 1. In every orthomodular lattice \mathcal{L} the following implications are true: (a) if one of the three elements a, b, c of \mathcal{L} is compatible with each of the two others, then

$$(a \lor b) \land c = (a \land c) \lor (b \land c)$$
$$(a \land b) \lor c = (a \lor c) \land (b \lor c)$$

- (b) if $a \leq b$ or $a \perp b$, then $a \leftrightarrow b$
- (c) if $a \leftrightarrow b$, then $a \leftrightarrow b^{\perp}$
- (d) $a \leftrightarrow b \Leftrightarrow (a \lor b^{\perp}) \land b = a \land b$
- (e) \mathcal{L} is a Boolean algebra $\Leftrightarrow a \leftrightarrow b$ for all $a, b \in \mathcal{L}$

(f)
$$a \leftrightarrow b_i \Rightarrow a \leftrightarrow \bigvee_i b_i$$
, $a \leftrightarrow \bigwedge_i b_i$ if $\bigvee_i b_i$ and $\bigwedge_i b_i$ exist

Let \mathcal{L} be a complemented lattice. Let us introduce the star-product by

$$a*b = (a \lor b^{\perp}) \land b; \quad a, b \in \mathcal{L}.$$

By an elementary computation one can prove the following

Lemma 2. (See also Proposition 3 in [4]). If \mathcal{L} is an orthomodular lattice and $a, b, c \in \mathcal{L}$, then

- (a) a*a = a
- (b) c*a = 0 if $c \perp a$
- (c) (c*a)*b = 0 if $a \perp b$
- (d) (c*a)*a = c*a
- (e) c*(c*a) = c*a
- (f) $c*a = c \land a \Leftrightarrow c \leftrightarrow a$
- (g) (c*a)*b = (c*b)*a = c*a if $a \le b$
- (h) $(\bigvee_{i} c_{i}) * a = \bigvee_{i} (c_{i} * a)$ if $c_{i} \in \mathcal{L}$ and $\bigvee_{i} c_{i}, \bigvee_{i} (c_{i} * a)$ exist
- (i) (a*b)*c = a*(b*c) if $c \leftrightarrow b$

Let \mathscr{L} be an orthocomplemented lattice. A mapping m of \mathscr{L} into the real line \mathbb{R} is a probability measure if (i) $0 \le m(a) \le 1 \quad \forall a \in \mathscr{L}$, (ii) m(1) = 1, (iii) $m(a \lor b) = m(a) + m(b)$, if $a, b \in \mathscr{L}$, and $a \perp b$.

A probability measure m is a probability σ -measure if $m(\bigvee_{i=1}^{\infty} a_i) = \sum_{i=1}^{\infty} m(a_i)$ for all pairwise orthogonal $a_i \in \mathcal{L}$, provided that $\bigvee_{i=1}^{\infty} a_i$ exists. We call a probability measure (probability σ -measure) a two-valued measure (two-valued σ -measure), if it has only two values 0 and 1.

3. We need some new concepts before going on.

Definition. Let $\mathscr L$ be a complemented lattice. A nonempty subset $\mathscr N$ of $\mathscr L$ will be called a proper *-filter if

- (i) 0∈*N*
- (ii) if $a \in \mathcal{N}$ and $a \leq b$, then $b \in \mathcal{N}$
- (iii) if $a, b \in \mathcal{N}$, then $a * b \in \mathcal{N}$

If moreover N satisfies also

(iv) $a \in \mathcal{N}$ or $a^{\perp} \in \mathcal{N}$ for every $a \in \mathcal{L}$,

then \mathcal{N} is called a *-ultrafilter.

Of course, if \mathcal{N} is a *-ultrafilter, then it is not a proper subset of a proper *-filter of \mathcal{L} , so \mathcal{N} is maximal in this sense.

Lemma 3. If $\mathcal L$ is an orthomodular lattice, then a nonempty subset $\mathcal N$ of $\mathcal L$ is a proper *-filter if and only if

- (i) 0∈ N.
- (ii) if $a \in \mathcal{N}$ and $a \leq b$, then $b \in \mathcal{N}$,
- (iii)' if $a, b \in \mathcal{N}$ and $a \leftrightarrow b$, then $a \land b \in \mathcal{N}$.

PROOF. If $\mathcal N$ is a proper *-filter, then (i) and (ii) hold by definition. If $a, b \in \mathcal N$ and $a \leftrightarrow b$, then $a*b=a \land b \in \mathcal N$. Conversely, if $\mathcal N$ satisfies (i), (ii) and (iii)', then $a, b \in \mathcal N$ implies $a \lor b \bot \in \mathcal N$. However, $a \lor b \bot \leftrightarrow b$, so $a*b=(a \lor b \bot) \land b \in \mathcal N$, i.e. $\mathcal N$ is a proper *-filter, which was to be proved.

A block of a complemented lattice \mathcal{L} is a maximal Boolean subalgebra of.

Definition. Let $\hat{\mathbf{B}}_j$, $j \in \mathcal{J}$ be the class of the blocks of a complemented lattice \mathcal{L} . Let $\mathcal{J}' \subseteq \mathcal{J}$ and let us suppose that for every $j \in \mathcal{J}'$ there is a maximal filter \mathcal{N}_j in $\hat{\mathbf{B}}_j$ such that

- (i) $\bigcup_{j \in J'} \mathcal{N}_j$ does not contain orthogonal elements
- (ii) $\bigcup_{j \in \mathcal{J}'} \mathcal{N}_j$ is maximal, that is for every $i \in \mathcal{J} \setminus \mathcal{J}'$

and for every maximal filter \mathcal{N}_i of $\hat{\mathbf{B}}_i$, $(\bigcup_{j \in \mathcal{J}'} \mathcal{N}_j) \cup \mathcal{N}_i$ has orthogonal elements. In this case $\mathcal{R} = \bigcup_{j \in \mathcal{J}'} \mathcal{N}_j$ will be called a *realization*.

If in the preceding definition $\mathscr{J}'=\mathscr{J}$, then we say that $\mathscr{R}=\bigcup_{j\in\mathscr{J}'}\mathscr{N}_j$ is a complete realization.

Between the notions of *-ultrafilter and complete realization there is a close connection.

Lemma 4. If $\mathscr L$ is an orthomodular lattice and $\mathscr R \subset \mathscr L$, then the following two statements are equivalent:

- (i) R is a complete realization
- (ii) R is a *-ultrafilter

PROOF. Let $\mathscr{R} = \bigcup_{j \in \mathscr{J}} \mathscr{N}_j$ be a complete realization. Then a) $0 \notin \mathscr{R}$, b) If $a \in \mathscr{R}$ and $a \leq b$, then there exists a block $\hat{\mathbf{B}}_j$, $j \in \mathscr{J}$ in \mathscr{L} such that $a, b \in \hat{\mathbf{B}}_j$. If $a \in \mathscr{N}_j$, then $a^\perp \in \mathscr{N}_j$, which contradicts $a \in \mathscr{R}$, so $a \in \mathscr{N}_j$. Hence $b \in \mathscr{N}_j$. c) If $a, b \in \mathscr{R}$, then by the preceding property $a \lor b^\perp \in \mathscr{R}$, and from $a \lor b^\perp \leftrightarrow b$ there exists a block $\hat{\mathbf{B}}_k$, $k \in \mathscr{J}$ such that $a \lor b^\perp$, $b \in \hat{\mathbf{B}}_k$. Then $a \lor b^\perp$, $b \in \mathscr{N}_k \subset \hat{\mathbf{B}}_k$ and consequently $(a \lor b^\perp) \land b = a * b \in \mathscr{N}_k \subset \mathscr{R}$. d) If $c \in \mathscr{L}$, then $c \in \mathscr{R}$ or $c^\perp \in \mathscr{R}$.

a), b), c) and d) mean exactly that R is a *-ultrafilter.

Conversely, let us suppose that \mathcal{R} is a *-ultrafilter in \mathcal{L} . Let $\hat{\mathbf{B}}_j$, $j \in \mathcal{J}$ be the blocks of \mathcal{L} and let $\mathcal{N}_j = \mathcal{R} \cap \hat{\mathbf{B}}_j$, $j \in \mathcal{J}$. Then \mathcal{N}_j is a maximal filter in $\hat{\mathbf{B}}_j$ and $\mathcal{R} = \bigcup_{j \in \mathcal{J}} \mathcal{N}_j$ is a complete realization in \mathcal{L} .

Lemma 5. Let \mathcal{L} be an orthocomplemented lattice. Then

a) if m is a two-valued measure on \mathcal{L} , then $\mathcal{R} = \{a \in \mathcal{L} | m(a) = 1\}$ is a *-ultrafilter

b) if \mathcal{R} is a *-ultrafilter, then $m: \mathcal{L} \rightarrow \{0, 1\}$ defined by

$$m(a) = \begin{cases} 1, & a \in \mathcal{R} \\ 0, & a \in \mathcal{L} \setminus \mathcal{R} \end{cases}$$

is a two-valued measure on L.

Proof. The proof is somewhat trivial and so it will be not presented here.

Definitions. Let \mathscr{L} be a complemented lattice and denote by G a class of subsets of \mathscr{L} . We say that G is order determining if $a \in A \Rightarrow b \in A$ for all $A \in G$ implies $a \leq b$. Similarly, a set \mathfrak{M} of probability measures on an orthocomplemented lattice is order determining if $m(a) \leq m(b)$ for all $m \in \mathfrak{M}$ implies $a \leq b$.

Now we prove our theorem characterizing orthomodular lattices isomorphic to an *n*-class:

Theorem. Let \mathcal{L} be a complemented lattice. Then the following six statements are equivalent.

- (0) Let is orthomodular and isomorphic to an n-class.
- (i) Let has the following three properties:

- (A) If $a \in \mathcal{L}$, $a \neq 0$, then there exists a complete realization of \mathcal{L} containing a.
- (B) The set of the complete realizations of \mathcal{L} is order determining.
- (C) If $a, b \in \mathcal{L}$ and $a \leq b$, then there exists a Boolean subalgebra of \mathcal{L} which contains a and b.
- (ii) L has the following two properties:
- (A') If $a \in \mathcal{L}$, $a \neq 0$, then there exists a *-ultrafilter which contains a.
- (B') The set of the *-ultrafilters of \mathcal{L} is order determining.
- (iii) L is orthomodular and
- (D) for all $a, b \in \mathcal{L}$, $a \succeq b$ there exists a complete realization of \mathcal{L} which contains a and b.
- (iv) \mathcal{L} is orthomodular and
- (D') for all $a, b \in \mathcal{L}$, $a \leq b$ there exists a *-ultrafilter of \mathcal{L} which contains a and b.
- (v) The complementation of \mathcal{L} is an orthocomplementation and the set of two-valued probability measures on \mathcal{L} is order determining.

PROOF. The sketch of the proof is the following

I. (i) \Rightarrow (iii) because (C) implies that $\mathscr L$ is orthomodular and if $a, b \in \mathscr L$, $a \perp b$, then there exists a complete realization of $\mathscr L$ containing a. If every such complete realization $\mathscr R$ contained also b^{\perp} , then from (B) we should get $a \leq b^{\perp}$. This contradicts $a \perp b$, so there exists a complete realization of $\mathscr L$ containing a and b.

Conversely, (iii) \Rightarrow (i), because the orthomodularity implies (C). Furthermore, if $a \in \mathcal{L}$, $a \neq 0$, then there exists a complete realization containing a and 1, so (A) holds. Finally, if $a \in \mathcal{R} \Rightarrow b \in \mathcal{R}$ for every complete realization \mathcal{R} of \mathcal{L} , then there exists no complete realization containing a and b. Therefore $a \perp b^{\perp}$, that is $a \leq b$. So (B) holds, too.

II. (iii)⇒(iv) follows immediately from Lemma 4.

III. Let us assume that \mathcal{L} is orthomodular and (D') is satisfied in \mathcal{L} . Then (A') holds. If $a, b \in \mathcal{L}$ and $a \in \mathcal{R} \Rightarrow b \in \mathcal{R}$ for all *-ultrafilters \mathcal{R} containing a, then

there exists no *-ultrafilter containing a and b^{\perp} . Hence by (D') $a \perp b^{\perp}$, that is

 $a \le (b^{\perp})^{\perp} = b$, which was to be proved for (B').

IV. Let us assume that (A') and (B') are satisfied in \mathscr{L} . If $a, b \in \mathscr{L}$ and $a \leq b$, then there are two different cases. Firstly, when $b^{\perp} = 0$, then trivially $b^{\perp} \leq a^{\perp}$. Secondly, when $b^{\perp} \neq 0$, then there exists a *-ultrafilter \mathscr{R} in \mathscr{L} which contains b^{\perp} . But for every such \mathscr{R} we have $a^{\perp} \in \mathscr{R}$ because $a \in \mathscr{R}$ would contradict $b^{\perp} \in \mathscr{R}$. Hence by (B') $b^{\perp} \leq a^{\perp}$. On the other hand, there is no *-ultrafilter in \mathscr{L} which contains $(0^{\perp})^{\perp}$, so $(0^{\perp})^{\perp} = 0$, and if $a \in \mathscr{L}$, $a \neq 0$, then for every *-ultrafilter \mathscr{R} which contains a we have $a^{\perp} \notin \mathscr{R}$, $(a^{\perp})^{\perp} \in \mathscr{R}$, i.e. $a \leq (a^{\perp})^{\perp}$. Contrarily, if $(a^{\perp})^{\perp} \in \mathscr{R}$ for a *-ultrafilter \mathscr{R}' , then $a^{\perp} \notin \mathscr{R}'$, $a \in \mathscr{R}'$ which imply $(a^{\perp})^{\perp} = a$. Summarizing our results we can state that \perp is an orthocomplementation.

Now we prove the weakly modularity of \mathscr{L} . Let $a, b \in \mathscr{L}$, $a \leq b$. Then $a, b \land a^{\perp} \leq b$. Let us assume that $a, b \land a^{\perp} \leq c$, $c \in \mathscr{L}$. To prove $b = a \lor (b \land a^{\perp})$ it is sufficient to see $b \leq c$. Let us assume that \mathscr{R} is a *-ultrafilter and $b \in \mathscr{R}$. Then there are two different cases: 1. If $a \in \mathscr{R}$, then $c \in \mathscr{R}$, 2. If $a \notin \mathscr{R}$, then $a^{\perp} \in \mathscr{R}$, $b * a^{\perp} = (b \lor a) \land a^{\perp} = b \land a^{\perp} \in \mathscr{R}$. By using $b \land a^{\perp} \leq c$ we get $c \in \mathscr{R}$, that is $b \in \mathscr{R}$ implies $c \in \mathscr{R}$, which means that $b \leq c$, which was to be proved. Thus the ortho-

modularity of \mathcal{L} is proved.

In order to prove (D) it will be sufficient to show that for every $a, b \in \mathcal{L}$, $a \ge b$

there is a complete realization \mathcal{R} of \mathcal{L} such that $a, b \in \mathcal{R}$.

Let $a, b \in \mathcal{L}$, $a \succeq b$. Since $a \neq 0$, we have a *-ultrafilter \mathcal{R} in \mathcal{L} containing a. If there is no *-ultrafilter containing a and b, then $b^{\perp} \in \mathcal{R}$. Hence by (B') we have $a \leq b^{\perp}$ which is a contradiction. This means that there is a *-ultrafilter \mathcal{R}' which contains a and b, and by Lemma 4. \mathcal{R}' is a complete realization.

V. We assume first that \mathcal{L} is an orthocomplemented lattice and the set \mathfrak{M}_0 of two-valued probability measures on \mathcal{L} is order determining. Let $a \in \mathcal{L}$, $a \neq 0$, then there exists an element m of \mathfrak{M}_0 satisfying m(a)=1, because m(a)=0 for all $m \in \mathfrak{M}_0$ would imply a=0. So $a \in \mathcal{R} = \{x \in \mathcal{L} | m(x)=1\}$, where \mathcal{R} is a *-ultrafilter by Lemma 5, which shows that (A') holds in \mathcal{L} .

To prove (B') let us suppose now that $a, b \in \mathcal{L}$, $a \neq 0$ and every *-ultrafilter \mathcal{R} containing a contains also b. By Lemma 5. this means that for every $m \in \mathfrak{M}_0$, m(a)=1 implies m(b)=1. Hence $v(a) \leq v(b)$ for all $v \in \mathfrak{M}_0$. Since \mathfrak{M}_0 is order

determining we obtain $a \le b$. So (B') also holds in \mathcal{L} .

Contrarily, let us suppose that (A') and (B') are satisfied in \mathcal{L} . Then \mathcal{L} is an orthomodular and consequently orthocomplemented lattice. Since there exists *-ultrafilters of \mathcal{L} so $\mathfrak{M}_0\neq\emptyset$. Moreover, if $a,b\in\mathcal{L}$, $a\neq0$ and $m(a)\leq m(b)$ for all $m\in\mathfrak{M}_0$, then for every *-ultrafilter \mathcal{R} satisfying $a\in\mathcal{R}$ we can define a two-valued probability measure m:

$$m(x) = \begin{cases} 1, & x \in \mathcal{R} \\ 0, & x \in \mathcal{L} \setminus \mathcal{R} \end{cases}$$

which satisfies m(a)=1. Therefore m(b)=1 and $b\in \mathcal{R}$. With the help of (B') we obtain $a \le b$. So \mathfrak{M}_0 is order determining.

VI. Let us suppose that \mathcal{L} is satisfies (A), (B) and (C). Denote by $\Omega(\mathcal{L})$ the set of complete realizations of \mathcal{L} , and for all $a \in \mathcal{L}$ let

$$X_a = \begin{cases} \text{if } a = 0 \\ \{ \mathcal{R} \in \Omega(\mathcal{L}) | a \in \mathcal{R} \} \text{ if } a \neq 0 \end{cases}$$

Let $\mathscr{L}' = \{X_a | a \in \mathscr{L}\}\$ and $h(a) = X_a$ for all $a \in \mathscr{L}$. Then \mathscr{L}' is an *n*-class and $h: \mathscr{L} \to \mathscr{L}$ $\rightarrow \mathcal{L}'$ is an isomorphism to \mathcal{L}' , because

1. $\Omega(\mathcal{L}) \in \mathcal{L}'$ by $X_1 = \Omega(\mathcal{L})$. 2. If $a \in \mathcal{L}$, then $X_a \perp = \Omega(\mathcal{L}) \setminus X_a$, so $A \in \mathcal{L}' \Rightarrow A' = \Omega \setminus A \in \mathcal{L}'$. 3. Let $a, b \in \mathcal{L}$. Then trivially $a \leq b \Leftrightarrow X_a \subseteq X_b$.

The orthomodularity of \mathcal{L} follows from (C).

VII. (0) \Rightarrow (v) is somewhat trivial, because if \mathcal{L} is isomorphic to an *n*-class \mathcal{L}' , then \mathscr{L}' is orthocomplemented and the set of two-valued probability measures on \mathcal{L}' is order determining, which implies the same properties in \mathcal{L} .

This completes the proof of the Theorem.

Remark. Consider the above defined isomorphism $h: \mathcal{L} \to \mathcal{L}'$. The following three conditions are equivalent:

- (i) a ↔ b
- (ii) $\sup (h(a), h(b)) = h(a) \cup h(b)$
- (iii) $\inf(h(a), h(b)) = h(a) \cap h(b)$

References

- [1] E. G. Beltrametti, G. Casinelli, The Logic of Quantum Mechanics, Addison-Wesley, 1981.
- [2] S. GUDDER, Quantum probability spaces, Proc. Amer. Math. Soc. 21 (1969), 296—302.
 [3] S. GUDDER, Stochastic Methods in Quantum Mechanics, North Holland, 1979.

[4] I. G. Kalmár, *-structure and orthomodular lattices, Publ. Math. (Debrecen) 32 (1985), 1-5.

[5] R. Sikorski, Boolean Algebras, Springer, Berlin, 1964.

[6] P. SUPPES, The probabilistic argument for a nonclassical logic for quantum mechanics, Philos. Sci. 33 (1966), 14-21.

I. G. KALMÁR DEPT. OF MATH. UNIV. OF DEBRECEN H-4010 DEBRECEN, PF. 12 YUNGARY

(Received January 20, 1984.)