Lattice theoretical characterizations of quantum probability space I
By I. G. KALMAR (Debrecen)

1. The notion of quantum probability space was introduced by Suppes [6],
and later it was investigated by many authors, for example by GUDDER [2].
Let Q be a nonempty set and let S, be a collection of its subsets which satisfy

() Q¢€S,
() if Ae€S,, then A°= OQ\AES,
(iil) if A;€S, (l - 1, 2, ), A;ﬂAI =0 (l ?5‘]), then U A;GS,
i

Then we call S, a o-class, and (2, S,, p) is called a quantum probability space, if
p is a nonnegative set function on S, such that p(Q)=1, and p(J 4;)= 2> p(4)
i i

if A,NA;=0 (i=)).

It is easy to see that quantum probability space is more general than classical
probability space, but less general than the usual quantum logic. So the first question
that arises: which orthomodular e-poset (partially ordered set) will be isomorphic
to a o-class?

A simple theorem of Gudder gives a characterization of this type of ortho-
modular o-poset with the help of two-valued measures on it. See, for example [3],
Theorem 3.28. In this paper we shall give lattice theoretical characterizations of
those orthomodular lattices that are isomorphic to a class S of a nonempty set Q
with the following properties:

(i) Q€S
(i) if A€S, then A°= Q\AES
(lli) if AI,A2€S, AlﬂA2=ﬂ', then AIUASGS

Such an § will be called an n-class.*)

First we recall the basic notions that we shall use.

2. Let Z(V, A, 1,0,1) be a complemented lattice with least and greatest
elements O an 1, respectively. If the complementation | satisfies also (i) (¢+)*+=
=aYac ¥, and (ii)) bt=at if a=b, a,bc ¥, then we call | orthocomplementa-

*) The isomorphism to a o-class will be examined in Part II.
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tion and & orthocomplemented lattice. We remark that the De Morgan laws are
valid in every orthocomplemented lattice.
A complemented lattice is weakly modular if

aVb = aV(atA(aVb)) for all a, beZ.

An orthomodular lattice is an orthocomplemented and weakly modular lattice.
The relation of orthogonality (1) for elements a, b of an orthocomplemented lattice
is defined by a1 b if a=b+t. For elements a, b of an orthocomplemented lattice
2 we say that they are compatible, in symbols a<b, if there exists a Boolean sub-
algebra in . containing a and b.

In the following lemma we collected the most important properties of compa-
tibility.

Lemma 1. In every orthomodular lattice ¥ the following implications are true:

(a) if one of the three elements a,b,c of ¥ is compatible with each of the

two others, then
(aVb)Ac = (aAe)V(bAc)

(aAb)Ve = (aVe)A(bVe)
(b) if a=b or al b, then a«+b
(c) if a<=b, then a<-b+
(d) a«~-be(aVbLt)Ab=alb
(e) & is a Boolean algebra <> a<~b for all a,be &
(f) a«»b;=>a-+\‘/ b;, aﬂ/;\ b; if Y b; and fi\bi exist

Let # be a complemented lattice. Let us introduce the star-product by
axb = (aVb+)\b;, a,bcZ.
By an elementary computation one can prove the following

Lemma 2. (See also Proposition 3 in [4]). If & is an orthomodular lattice and
a,b,ce ¥, then

(a) axa=a

(b) ¢c¥xa=0 if cla

() (c*a)*b=0 if albd

(d) (c*a)*a = c*a

(€) c*(c*a)=c*a

(f) cxa=chaeoc+a

(g) (cxa)*b = (cxb)*a=c#*a if a=b

(h) (Y c,)*a:\‘/(c,*a) if €% and }/c,-, \l/(c,-am) exist

(i) (axb)xc=ax(bxc) if c-—b
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Let £ be an orthocomplemented lattice. A mapping m of & into the real line
R is a probability measure if (i) 0=m(a)=1 VYac, (i) m(1)=1, (iii) m(aVb)=
=m(a)+m(b), if a,bc ¥, and a Lb.

A probability measure m is a probability o-measure if m(\./’ a;) = f'm(a,)
i=1 i=1
for all pairwise orthogonal a;¢ Z, provided that \/ a; exists. We call a probability
i=1

measure (probability o-measure) a two-valued measure (two-valued o-measure), if it
has only two values 0 and 1.

3. We need some new concepts before going on.

Definition. Let & be a complemented lattice. A nonempty subset A4~ of £ will
be called a proper *-filter if

(i) 0exN
(ii) if acA/ and a=b, then beN
(iii) if a, bEAN, then axbeN
If moreover A satisfies also
(iv) a€N or alteN for every ac¥,

then A" is called a *-ultrafilter.
Of course, if A" is a *-ultrafilter, then it is not a proper subset of a proper
* -filter of &, so A" is maximal in this sense.

Lemma 3. If % is an orthomodular lattice, then a nonempty subset N of £
is a proper *-filter if and only if
() 0eAH
(ii) if acAN and a=b, then beEN,
(iiiy if a,béEN and a--b, then alAbeN.

Proor. If A is a proper *-filter, then (i) and (ii) hold by definition. If a, bé ¥
and a<b, then a*b=aAbeA". Conversely, if A satisfies (i), (ii) and (iii)’, then
a,be & implies aVbieA". However, aVbt«+b, so axb=(aVbL)AbeN, ie.
A" is a proper *-filter, which was to be proved.

A block of a complemented lattice % is a maximal Boolean subalgebra of.

Definition. Let ﬁj, JE€F be the class of the blocks of a complemented lattice
Z. Let #°C # and let us suppose that for every j€ ¢ there is a maximal filter

A ; in B; such that

(i) (J A does not contain orthogonal elements
jer

(i) U A is maximal, that is for every i€ N\ ¢’
jey
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and for every maximal filter 4; of B;, ( U A)UA; has orthogonal elements.
In this case Z= U .A’} will be called a reahzanon
If in the precedmg definition #’= ¢, then we say that Z= |J A is a com-
jes

plete realization.
Between the notions of *-ultrafilter and complete realization there is a close

connection.

Lemma 4. If % is an orthomodular lattice and Zc %, then the following two
statements are equivalent:

(i) 2 is a complete realization
(ii) 2 isa *-ultrafilter

Proor. Let #= ) A be a complete realization. Then a) 0¢#, b) If acZ
ics < £

and a=b, then there exists a block B;, j€ # in & such that a, beéB;. If acAHj,
then a*+€.4;, which contradicts a€#, so a€N;. Hence beAN;. c) If a, bEZR,
then by the precedmg property aVbi€Z, and from aVbJ--t-b there exists a block
B,, k€# such that aVbL, beB,. Then aVbt, beA,CB, and consequently
(@Vbi)Ab=axbe N ,CR. d) If c€ %, then c€ER or cLER.

a), b), ¢) and d) mean exactly that 2 is a * -ultrafilter.

Conversely, let us suppose that R is a *-ultrafilter in &Z. Let B,, J€F be the

blocks of & and let A4 —QHB,, J€J. Then A is a maximal filter in B_, and
2= |J A; is a complete realization in %.

jes

Lemma 5. Let ¥ be an orthocomplemented lattice. Then

a) if m is a two-valued measure on %, then R={ac ¥\m(a)=1} is a *-ultra-

filter
b) if R is a *-ultrafilter, then m: % —{0, 1} defined by

(a)—-{l’ acR
MB=10. ac 2

is a two-valued measure on £.
Proor. The proof is somewhat trivial and so it will be not presented here.

Definitions. Let ¥ be a complemented lattice and denote by G a class of
subsets of . We say that G is order determining if ac A=bc A for all A€G implies
a=b. Similarly, a set M of probability measures on an orthocomplemented lattice
is order determining if m(a)=m(b) for all meéM implies a=>.

Now we prove our theorem characterizing orthomodular lattices isomorphic
to an n-class:

Theorem. Let ¥ be a complemented lattice. Then the following six statements
are equivalent.
(0) &£ is orthomodular and isomorphic to an n-class.
(1) & has the following three properties:
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(A) If ac¥, a#0, then there exists a complete realization of ¥ containing a.

(B) The set of the complete realizations of & is order determining.

(C) If a,bce¥ and a=b, then there exists a Boolean subalgebra of ¥ which
contains a and b.

(i) & has the following two properties:

(A’) If ac %, a#0, then there exists a %-ultrafilter which contains a.

(B’) The set of the «-ultrafilters of % is order determining.

(iii) 2 is orthomodular and

(D) for all a,be ¥, ax b there exists a complete realization of ¥ which contains
a and b.

(iv) & is orthomodular and

(D’) for all a,be %L, at b there exists a »-ultrafilter of & which contains a and b.

(v) The complementation of ¥ is an orthocomplementation and the set of two-
valued probability measures on % is order determining.

ProoF. The sketch of the proof is the following

()

I. (i)=(iii) because (C) implies that .Z is orthomodular and if a,b€%, aX b,
then there exists a complete realization of % containing a. If every such complete
realization # contained also b+, then from (B) we should get a=b-+. This contra-
dicts ax b, so there exists a complete realization of £ containing a and b.

Conversely, (iii)=>(i), because the orthomodularity implies (C). Furthermore,
if a€ %, a#0, then there exists a complete realization containing @ and 1, so (A)
holds. Finally, if ac#=bcR for every complete realization # of %, then there
exists no complete realization containing @ and b. Therefore a L b+, that is a=b.
So (B) holds, too.

II. (iii)=(iv) follows immediately from Lemma 4.

III. Let us assume that % is orthomodular and (D’) is satisfied in %. Then
(A’) holds. If a,be ¥ and acR=beR for all *-ultrafilters # containing a, then
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there exists no #*-ultrafilter containing a and b.. Hence by (D’) albi, that is
a=(b1t)L=>b, which was to be proved for (B’).

IV. Let us assume that (A’) and (B’) are satisfied in 2Z. If @, b€¥ and a=b,
then there are two different cases. Firstly, when b1 =0, then trivially bi=al.
Secondly, when b+#0, then there exists a #-ultrafilter # in % which contains
b+. But for every such # we have alt€Z because ac# would contradict bL€R.
Hence by (B’) b+=a'. On the other hand, there is no *-ultrafilter in ¥ which
contains (0+)+4, so (04)+=0, and if ac%, a0, then for every #-ultrafilter #
which contains @ we have at ¢ #, (a+)L€R, i.e. a=(at)t. Contrarily, if (a+)L€R’
for a *-ultrafilter &', then at ¢ R, ac R which imply (at)!=a. Summarizing
our results we can state that | is an orthocomplementation.

Now we prove the weakly modularity of . Let a, b€ %, a=b. Then a,bA
Aat+=b. Let us assume that a,bN\a+=c, c€Z. To prove b=aV(bAat) it is
sufficient to see b=c. Let us assume that # is a *-ultrafilter and b€Z. Then
there are two different cases: 1. If a€®, then c€R, 2. If aé R, then al€R,
bxat=(bVa)A\at=bNa+€R. By using bAat=c we get c€R, that is beR
implies ¢€#, which means that b=¢, which was to be proved. Thus the ortho-
modularity of Z is proved.

In order to prove (D) it will be sufficient to show that for every a, b€ %, ax b
there is a complete realization # of % such that a, b€ Z.

Let a,bc %, atb. Since a0, we have a *-ultrafilter Z in & containing a.
If there is no *-ultrafilter containing a and b, then b1€%. Hence by (B’) we have
a=b+ which is a contradiction. This means that there is a *-ultrafilter 2’ which
contains a and b, and by Lemma 4. #’ is a complete realization.

V. We assume first that % is an orthocomplemented lattice and the set I,
of two-valued probability measures on % is order determining. Let a€.%, a=0,
then there exists an element m of M, satisfying m(a)=1, because m(a)=0 for all
meM, would imply a=0. So acR={xc L|m(x)=1}, where Z is a *-ultrafilter
by Lemma 5, which shows that (A’) holds in 2.

To prove (B’) let us suppose now that a, b€ %, a0 and every x-ultrafilter
A containing a contains also b. By Lemma 5. this means that for every mcM,,
m(a)=1 implies m(b)=1. Hence v(a)=v(b) for all véM,. Since M, is order
determining we obtain a=b. So (B’) also holds in %.

Contrarily, let us suppose that (A’) and (B’) are satisfied in %. Then . is an
orthomodular and consequently orthocomplemented lattice. Since there exists
#-ultrafilters of & so My=0. Moreover, if a, b€, a#0 and m(a)=m(b) for
all meM,, then for every #-ultrafilter # satisfying ac# we can define a two-
valued probability measure m:

1, xe®

"‘(x)‘{o, XEL\R

which satisfies m(a)=1. Therefore m(b)=1 and beZ. With the help of (B’
we obtain a=b. So M, is order determining.

VI. Let us suppose that & is satisfies (A), (B) and (C). Denote by Q(%) the
set of complete realizations of %, and for all acZ let

% _{ if a=0
T YReQ(D)acR} if a=0
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Let ¥’'={X,|ac %} and h(a)=2X, forall ac %. Then &’ is an n-classand h: &~
-’ is an isomorphism to #’, because

1. QL)L by X,=Q(Z).

2 If ac 2, then X r=0(F)N\X,, 80 AcL'=A =0\ AcY".

3. Let a,be%. Then trivially a=beX,CX,.

The orthomodularity of Z follows from (C).

VII. (0)=>(v) is somewhat trivial, because if & is isomorphic to an n-class .%’,
then %’ is orthocomplemented and the set of two-valued probability measures on
&’ is order determining, which implies the same properties in &.

This completes the proof of the Theorem.

REMARK. Consider the above defined isomorphism h: & —%’. The following
three conditions are equivalent:

() a<b

(i) sup(h(a), h(b)) = h(a)Uh(b)
(i) inf(h(a), h(b)) = h(a)Nh(b))
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