On a class of arithmetical functions

By GRYTCZUK ALEKSANDER (Zielona Góra)

1. Introduction

Let \mathcal{H} denote the set of all arithmetical functions h such that:

$$(1.1) h: N \times C \to C$$

(1.2)
$$\sum_{\substack{x \le n \le y}} |h(n, z)| \le R(y-x) + O\left(y^{\alpha} (\log x)^{\operatorname{Re} z - q - 2}\right)$$

for $|z| \le 1$, $0 < \alpha < 1$, where $q \ge 0$ is an arbitrary integer number and $R \ge 1$ is a fixed real number.

(1.3)
$$\sum_{n=1}^{\infty} \frac{h(n, z)}{n^s} = g(s, z)\zeta^z(s), \text{ for } \text{Re } s > 1, \quad |z| \le 1$$

(1.4) g(s, z) is a holomorphic function in the region

$$\left\{\sigma > 1 - \frac{c_1}{\log\left(|t| + 2\right)}, -\infty < t < +\infty, |z| \le 1\right\}; \quad c_1 < \frac{\log 2}{2}$$

(1.5)
$$|g(s, z)| \le K$$
, for $\sigma \ge \sigma_1 > \frac{1}{2}$, $\sigma_1 < 1$, $|z| \le 1$.

In this paper we shall prove the following theorems:

Theorem 1. Let $h \in \mathcal{H}$, then there exists a sequence of functions $A_j(z)$ defined and continuous in the circle $|z| \le 1$ and holomorphic in the circle |z| < 1 such that for every integer number $q \ge 0$ we have

(1.6)
$$\sum_{n \le x} h(n, z) = \sum_{j=0}^{q} x A_j(z) (\log x)^{z-j-1} + O(x (\log x)^{\operatorname{Re} z - q - 2})$$

uniformly with respect to $|z| \le 1$ as $x \to \infty$, where

$$A_j(z) = \frac{B_j(z)}{\Gamma(z-j)}, \quad B_j(z) = \frac{1}{2\pi i} \int_{|s-1|=\delta < 1/2} \frac{H(s,z)}{s(s-1)^j} ds \quad \text{for} \quad j = 0, 1, 2, ..., q,$$

$$(1.8) H(s, z) = g(s, z) \exp \left(z \log (s-1)\zeta(s)\right).$$

Theorem 2. Let

(i) $|h(n,z)| \le R$, where $R \ge 1$ and $|z| \le 1$,

(ii)
$$\sum_{p} \frac{|h(p,z)-z|}{p^{\sigma}} < \infty$$
, for $\sigma \ge \sigma_1 > \frac{1}{2}$, $|z| \le 1$, $\sigma_1 < 1$,

(iii) h(k, l, z)=h(k, z) h(l, z) for all pairs of natural numbers k, l such that (k, l)=1.

If the function h satisfies the condition (i)—(iii) and h is holomorphic with respect to z in the circle |z| < 1, then $h \in \mathcal{H}$.

From this theorem we get the following corollary:

Corollary. Let $h(n, z) = f(n)z^{F(n)}$, where $|z| \le 1$ and

$$f: N \to C, |f(n)| \le R; R \ge 1$$

$$F: N \to N \cup \{0\}$$

f(kl)=f(k)f(l), F(kl)=F(k)+F(l) for all pairs of natural numbers k, l such that (k, l)=1 and if f(p)=F(p)=1 for every prime number p, then $h=f(n)z^{F(n)}\in\mathcal{H}$.

We remark that from this Corollary and the Theorem 1 we can get some results which were proved by A. Selberg in the paper [2] $(h=z^{F(n)}, F=\Omega \text{ or } \omega)$ and by H. Delange in [1], $(h=f(n)z^{F(n)}; f: N \rightarrow \{0, 1\})$.

2. Proof of Theorem 1

In the proof of the Theorem 1 we use the following Lemmas:

Lemma 1. In the region

$$\sigma > 1 - \frac{c_1}{\log(|t|+2)}, \quad |t| \ge 2$$

we have

$$\log \zeta(s) \ll \log \log |t|$$
.

Lemma 2. In the region

$$\sigma > 1 - \frac{c_1}{\log 4} > \frac{1}{2}, \quad |t| < 2,$$

we have

$$\log(s-1)\zeta(s) = O(1).$$

Applying K. Wiertelak's results ([3]) for the case K=Q and utilizing the standard method for estimating $\log \zeta(s)$ and $\log (s-1)\zeta(s)$ we can get the proofs of Lemma 1 and Lemma 2.

Let $P_z(x) = \sum_{n \le x} h(n, z)$, then by Perron's classical formula and (3) we get

$$\int_{0}^{x} P_{z}(t) dt = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^{s+1}}{s(s+1)} g(s, z) \zeta^{z}(s) ds,$$

where c>1, x>0. Putting $\zeta^z(s)g(s,z)=H(s,z)(s-1)^{-z}$ and

$$\Phi(s, z, x) = \frac{x^{s+1}}{s(s+1)} H(s, z)(s-1)^{-z}$$

we obtain

(2.1)
$$\int_{0}^{x} P_{z}(t) dt = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \Phi(s, z, x) ds.$$

Let $\sigma_1=1-\frac{c_1}{\log 4}=1-\eta>\frac{1}{2}$, then $0<\eta<\frac{1}{2}$ and let $r<\eta$ and $0<\varepsilon<$ -arc tg $\frac{2}{\eta}$. Then by Cauchy's theorem the integral on the right-hand side of (2.1) may by replaced by the integrals I_1,\ldots,I_9 over the paths Γ_1,\ldots,Γ_9 which are defined as follows:

$$\Gamma_1$$
, is the segment $\left\langle c - iT, 1 - \frac{c_1}{\log(|T|+2)} - iT \right\rangle$

 Γ_2 , is the curve described by $1 - \frac{c_1}{\log(|t|+2)} + it$ as t increases from -T to -2.

 Γ_3 , is the segment $(1-\eta-2i, 1-\eta-i\eta \operatorname{tg} \varepsilon)$,

 Γ_4 , is the segment $\langle 1-\eta-i\eta \operatorname{tg} \varepsilon, 1-\operatorname{re}^{i\varepsilon} \rangle$

 Γ_5 , is the arc of the circle $1+re^{i\Theta}$ described as Θ increases from $-\pi+\varepsilon$, to $\pi-\varepsilon$.

 Γ_6 , is the segment $\langle 1-re^{-i\varepsilon}, 1-\eta+i\eta \operatorname{tg} \varepsilon \rangle$

 Γ_7 , is the segment $\langle 1-\eta+i\eta \operatorname{tg} \varepsilon, 1-\eta+2i\rangle$

 Γ_8 , is the curve described by $1 - \frac{c_1}{\log(|t|+2)} + it$ as t increases from 2 to T.

$$\Gamma_9$$
, is the segment $\left\langle 1 - \frac{c_1}{\log(T+2)} + iT, c + iT \right\rangle$.

We note that Γ_1 , Γ_2 , Γ_8 and Γ_9 depend only on T, and do not depend on r or ε . For fixed T and r, and for $\varepsilon \to 0$, Γ_3 and Γ_7 become the segments $\Gamma_3' = \langle 1 - \eta - 2i, 1 - \eta \rangle$, $\Gamma_7' = \langle 1 - \eta, 1 - \eta + 2i \rangle$.

For I_4 and I_6 we have

$$\lim_{\varepsilon \to 0} I_4 = \lim_{\varepsilon \to 0} \int_{\Gamma_4} \Phi(s, z, x) \, ds = \int_{1-\eta}^{1-r} H(\sigma, z) (1-\sigma)^{-z} (e^{-i\pi})^{-z} \frac{x^{\sigma+1}}{\sigma(\sigma+1)} \, d\sigma,$$

$$\lim_{\epsilon \to 0} I_6 = \lim_{\epsilon \to 0} \int_{\Gamma_6} \Phi(s, z, x) \, ds = \int_{1-r}^{1-\eta} H(\sigma, z) (1-\sigma)^{-z} (e^{i\pi})^{-z} \frac{x^{\sigma+1}}{\sigma(\sigma+1)} \, d\sigma.$$

If $\gamma_r = \{s: |s-1| = r\}$ excluding the point 1-r, then

$$\lim_{s\to 0} I_4 + I_5 + I_6 = \int_{\gamma_-} \Phi(s, z, x) \, ds + 2i \sin \pi z \int_r^{\eta} \frac{H(1-u, z)}{(1-u)(2-u)} u^{-z} x^{2-u} \, du$$

which does not depend on the choice of r. If $T \to \infty$ then $I_1 \to 0$, and $I_9 \to 0$ so that

(2.2)
$$\int_{0}^{x} P_{z}(t) dt = S_{z}(x) + \omega(x, z)$$

where

(2.3)
$$S_z(x) = \frac{\sin \pi z}{\pi} \int_{r}^{\eta} \frac{H(1-u,z)}{(1-u)(2-u)} x^{2-u} du + \frac{1}{2\pi i} \int_{v}^{\infty} \Phi(s,z,x) ds,$$

(2.4)
$$\omega(x,z) = J_2 + J_3 + J_7 + J_8$$

and

$$(2.5) \quad J_2 = \frac{1}{2\pi i} \int_{-\infty}^{-2} \Phi\left(1 - \frac{c_1}{\log(|t|+2)} + it, z, x\right) \left(i + \frac{c_1}{(|t|+2)\log^2(|t|+2)}\right) dt,$$

(2.6)
$$J_3 = \frac{1}{2\pi i} \int_{\Gamma_s} \Phi(s, z, x) ds; \quad J_7 = \frac{1}{2\pi i} \int_{\Gamma_s} \Phi(s, z, x) ds,$$

(2.7)
$$J_8 = \frac{1}{2\pi i} \int_{2}^{+\infty} \Phi\left(1 - \frac{c_1}{\log(t+2)} + it, z, x\right) \left(i + \frac{c_1}{(t+2)\log^2(t+2)}\right) dt.$$

Using Lemma 1 we have on Γ_2 and Γ_8

$$\Phi(s, z, x) \ll x^{2-(c_1/\log(|t|+2))}|t|^{-2}\log|t|$$

and we obtain the following estimate:

$$(2.8) J_2 + J_8 \ll x^2 \exp\left(-2A\sqrt{\log x}\right) \int_{2}^{+\infty} t^{-2+\varepsilon} \log t \, dt$$

where $A = \sqrt{\varepsilon c_3}$, $c_3 > 0$.

Since the integral $\int_{2}^{+\infty} t^{-2+\epsilon} \log t \, dt$ is bounded, from (2.8) we get

$$(2.9) J_2 + J_8 \ll x^2 \exp(-2A \sqrt{\log x}).$$

On Γ'_3 and Γ'_7 we have

$$\Phi(s, z, x) \ll x^{2-\eta} = x^2 \exp(-n \log x)$$

and therefore we obtain

$$(2.10) J_3 + J_7 \ll x^2 \exp\left(-2A \sqrt{\log x}\right).$$

By (2.4), (2.9) and (2.10) it follows that

$$(2.11) \omega(x, z) \ll x^2 \exp\left(-2A\sqrt{\log x}\right).$$

It can be noted that for $|z| \le 1$ the function $S_z(x)$ is infinitely differentiable. From (2.3) we get

$$(2.12) S_z''(x) = \frac{\sin \pi z}{\pi} \int_r^{\eta} H(1-u)u^{-z}x^{-u} du + \frac{1}{2\pi i} \int_{\gamma_z} H(s,z)(s-1)^{-z}x^{s-1} ds.$$

By Lemma 2 and (1.5) it follows that the function $H(s, z) = g(s, z) \exp(z \log(s-1)\zeta(s))$ is bounded in the region $|s-1| \le \eta$, $|z| \le 1$. Hence, we have

(2.13)
$$\int_{r}^{\eta} H(1-u,z)u^{-z}x^{-u} du \ll \int_{r\log x}^{\eta \log x} v^{-1}e^{-v} dv,$$

where

$$u = \frac{v}{\log x}.$$

For $|s-1|=r<\frac{1}{2}$ we obtain

(2.14)
$$\int_{\gamma_r} H(s, z)(s-1)^{-z} x^{s-1} ds \ll x^r.$$

Putting $r = \frac{1}{\log x}$ for x sufficiently large from (2.13) and (2.14) we get

$$(2.15) S_z''(x) = 0(1).$$

Let
$$0 < \xi < \frac{x}{2}$$
, $t \in \langle x, x + \xi \rangle$, then

(2.16)
$$\left| \frac{1}{\xi} \int_{x}^{x+\xi} P_{z}(t) dt - P_{z}(x) \right| \leq \frac{1}{\xi} \int_{x}^{x+\xi} |P_{z}(t) - P_{z}(x)| dt.$$

From (2.16), (1.2) we get

$$(2.17) |P_z(t) - P_z(x)| \le R\xi + O(x^{\alpha}(\log x)^{\operatorname{Re} z - q - 2})$$

where $0 \le t - x \le \xi$ and $0 < \xi < x/2$. From (2.16) and (2.17) we get

$$\left|\frac{1}{\xi}\int_{x}^{x+\xi}P_{z}(t)\,dt-P_{z}(x)\right| \leq R\xi+O\left(x^{\alpha}(\log x)^{\operatorname{Re}z-q-2}\right).$$

On the other hand we have

$$(2.19) \quad \frac{1}{\xi} \int_{z}^{x+} P_{z}(t) dt = S'_{z}(x) + \xi \int_{z}^{1} (1-u) S''_{z}(x+u\xi) du + \frac{\omega(x+\xi,z) - \omega(x,z)}{\xi}.$$

By (2.11) and $0 < \xi < \frac{x}{2}$ it follows that

$$(2.20) \qquad \omega(x+\xi,z) \ll x^2 \exp(-2A\sqrt{\log x})$$

and similarly from (2.15) we get

(2.21)
$$S_z''(x+u\xi) = 0(1).$$

From (2.18), (2.20), (2.21) we obtain

$$(2.22) \left| \frac{1}{\xi} \int_{x}^{x+\xi} P_z(t) dt - S_z'(x) \right| \ll \xi + x (\log x)^{\operatorname{Re} z - q - 2} + \frac{1}{\xi} x^2 \exp\left(-2A \sqrt{\log x}\right).$$

Putting $\xi = x \exp(-A\sqrt{\log x})$, from (2.22) we have

$$\left|\frac{1}{\xi}\int_{x}^{x+\xi}P_{z}(t)\,dt-S_{z}'(x)\right|\ll x(\log x)^{\operatorname{Re}z-q-2}.$$

Since

$$|P_z(x) - S_z'(x)| \le \left| \frac{1}{\xi} \int_{x}^{x+\xi} P_z(t) \, dt - S_z'(x) \right| + \left| |P_z(x) - \frac{1}{\xi} \int_{x}^{x+\xi} P_z(t) \, dt \right|$$

by (2.23) and (2.18) it follows that

$$(2.24) |P_z(x) - S_z'(x)| \ll x (\log x)^{\text{Re } z - q - 2}.$$

To finish the proof there remains to evaluate $S'_z(x)$. For $|s-1|=r<\frac{1}{2}$, $|z|\leq 1$, we have

(2.25)
$$\frac{H(s,z)}{s} = \sum_{j=0}^{q} B_j(z)(s-1)^j + R_q(s,z)(s-1)^{q+1}$$

for every fixed non-negative integer q, where the $B_j(z)$'s are analytic functions. Cauchy's classical inequality for coefficients of a power series implies that $R_q(s, z) = O(1)$. By (2.25) and (2.3) it follows that

(2.25')

$$S'_{z}(x) = \sum_{j=0}^{q} x B_{j}(z) \left[\frac{\sin \pi (z-j)}{\pi} \int_{r}^{+\infty} u^{j-z} x^{-u} du + \frac{1}{2\pi i} \int_{r}^{r} (s-1)^{j-z} x^{s-1} ds \right] + W(x, z)$$

where

$$(2.26) W(x,z) = -\sum_{j=0}^{q} x B_{j}(z) \frac{\sin \pi (z-j)}{\pi} \int_{\eta}^{+\infty} u^{j-z} x^{-u} du + x \frac{\sin \pi (z-q-1)}{\pi} \int_{r}^{\eta} R_{q}(1-u,z) u^{q+1-z} x^{-u} du + \frac{x}{2\pi i} \int_{\gamma_{r}} R_{q}(s,z) (s-1)^{q+1-z} x^{s-1} ds.$$

Since, for $0 \le j \le q$ we have

$$\frac{\sin \pi (z-j)}{\pi} \int_{z}^{+\infty} u^{j-z} x^{-u} du + \frac{1}{2\pi i} \int_{z}^{z-1} x^{s-1} (s-1)^{j-z} ds = \frac{(\log x)^{z-j-1}}{\Gamma(z-j)},$$

by (2.25') it follows that

(2.27)
$$S'_{z}(x) = \sum_{j=0}^{q} x B_{j}(z) \frac{(\log x)^{z-j-1}}{\Gamma(z-j)} + W(x, z).$$

We remark that

(2.28)
$$\int_{\eta}^{+\infty} u^{j-z} x^{-u} du \ll (\log x)^{-q-3}, \text{ for } 0 \le j \le q, \quad |z| \le 1,$$

(2.29)
$$\int_{0}^{\pi} R_{q}(1-u, z) u^{q+1-z} x^{-u} du \ll (\log x)^{\operatorname{Re} z-q-2},$$

(2.30)
$$\int_{\gamma_r} R_q(s, z) (s-1)^{q+1-z} x^{s-1} ds \ll (\log x)^{\operatorname{Re} z - q - 2}$$

and therefore by (2.28)-(2.30) and (2.26) it follows that

(2.31)
$$W(x, z) \ll x(\log x)^{\text{Re } z - q - 2}$$

From (2.31), (2.27) and (2.24) we obtain

$$(2.32) P_z(x) = \sum_{j=0}^q x \frac{B_j(z)}{\Gamma(z-j)} (\log x)^{z-j-1} + O(x(\log x)^{\operatorname{Re} z - q - 2})$$

where

$$B_j(z) = \frac{1}{2\pi i} \int_{|s-1|=\delta < 1/2} \frac{H(s,z)}{s(s-1)^{j+1}} ds$$
, for $j = 0, 1, ..., q$

and theorem 1 is proved.

3. Proof of Theorem 2

From (i)-(iii) we have

$$\left|\sum_{n=1}^{\infty} \frac{h(n,z)}{n^s}\right| \le R \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}, \text{ for } \sigma > 1 \text{ and } |z| \le 1$$

and

We remark that the product

has the following form

where

(3.3)
$$u_{p}(s, z) = \sum_{k=1}^{\infty} \frac{h(p^{k}, z)}{p^{ks}},$$
$$v_{p}(s, z) = z \sum_{k=1}^{\infty} \frac{1}{k p^{ks}}.$$

Since
$$|u_p(s,z)| \le R \frac{1}{p^{\sigma}-1} = U_p$$
, we get

In a similar way we obtain

$$|u_p(s,z)-v_p(s,z)| \leq \frac{|h(p,z)-z|}{p^{\sigma}} + \overline{V}_p = V_p,$$

where

$$\overline{V}_p = R_1 \frac{1}{p^{2\sigma}}.$$

From (3.5) and (ii) we get

(3.6)
$$\sum_{p} V_{p} < \infty, \text{ for } \sigma \ge \sigma_{1} > \frac{1}{2}.$$

By Delange's Lemma (see [1]) it follows that the product (3.2) is absolutely and uniformly convergent in the region $\sigma \ge \sigma_1 = 1 - \eta > \frac{1}{2}$, $|z| \le 1$ and is bounded in this region. Let

 $g(s,z) = \prod_{p} (1 + u_p(s,z)) \exp(-v_p(s,z)),$

then

(3.7)
$$g(s, z) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^z \left(1 + \sum_{k=1}^{\infty} \frac{h(p^k, z)}{p^{ks}} \right)$$

and by (3.0) and (3.7) it follows that

$$\sum_{n=1}^{\infty} \frac{h(n,z)}{n^s} = g(s,z)\zeta^z(s)$$

so that (1.3) is fulfilled. We have $|g(s,z)| \le K$ for $\text{Re } s \ge \sigma_1 = 1 - \eta > \frac{1}{2}$, $|z| \le 1$, thus (1.5) is satisfied. Since g(s,z) is uniformly convergent, g(s,z) is analytic in the region

$$\sigma > 1 - \frac{c_1}{\log(|t| + 2)} > \frac{1}{2}, -\infty < t < +\infty, |z| \le 1;$$

 $c_1 < \frac{\log 2}{2}$ and the theorem is proved.

Corollary 1 is a simple consequence of the Theorem 2.

References

[1] H. Delange, Sur des formules de Atle Selberg, Acta Arithm. 19 (1971), 105-146.

[2] A. SELBERG, Note on a paper by L. G. Sathe. J. Indian Math. Soc. 18 (1954), 83-87.

[3] K. WIERTELAK, On the density of some sets of primes, II. Acta Arithm. 34 (1978), 197-210.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL UNIVERSITY ZIELONA GÓRA, POLAND

(Received February 27, 1984.)