On a class of arithmetical functions

By GRYTCZUK ALEKSANDER (Ziclona Gora)

1. Introduction

Let 5# denote the set of all arithmetical functions h such that:
(1.1) h: NXC-C
(1.2) 2 |h(n, 2)l = R(y—x)+0(y*(log x)Re=-1-2)

XEn=EYy

for |z|=1, O<a<1, where g=0 is an arbitrary integer number and R=1 is a
fixed real number.

(13) SH0D _ g, for Res>1, |d=1
n=1
(1.4) g(s,z) is a holomorphic function in the region
¢ e = : log2
{U}I—W,— <t<+ ,|Z|":="1}, o ks,
(1.5) lg(s,2)| =K, for o=o0, > %, o<1, |z|=1.

In this paper we shall prove the following theorems:

Theorem 1. Let hc i, then there exists a sequence of functions A;(z) defined
and continuous in the circle |z|=1 and holomorphic in the circle |z|<1 such that
for every integer number q=0 we have

(1.6) 2 hnz) = Zq'xAj(z)(logx #=1-14.0(x(log x)Re=—1-%)
n=x j=0
uniformly with respect to |z|=1 as x— <o, where
(1.7
=B . _He,2) A
v L L~ T b s

(1.8) H(s, 2) = g(s, z) exp (zlog (s—1){(s)).
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Theorem 2. Let
(i) |h(n,z)|=R, where R=1 and |z|=1,

G L@ _ . o sma =L, =1 o<l
P p 2
(iii) h(k, I, z)=h(k,z) h(l, z) for all pairs of natural numbers k,l such that
(k, ))=1.
If the function h satisfies the condition (1)—(ii1) and h is holomorphic with respect
to z in the circle |z|<1, then he .

From this theorem we get the following corollary:

Corollary. Let h(n,z)=f(n)z"™, where |z|=1 and
i N=-C, |fn|=R; R=1
F: N - NU{0}

f(kh=f(k)f (), F(kl)=F(k)+F(I) for all pairs of natural numbers k. such that
(k,)=1 and if f(p)=F(p)=1 for every prime number p, then h=f(n)z"®™¢c .

We remark that from this Corollary and the Theorem 1 we can get some results
which were proved by A. SELBERG in the paper [2] (h=zF™, F=Q or w) and by
H. DELANGE in [1], (h=f(n)zF™; f: N-{0, 1}).

2. Proof of Theorem 1

In the proof of the Theorem 1 we use the following Lemmas:

Lemma 1. In the region
Cy

“Tzqry)’ =2

og>1

we have
log {(s) =< loglog |¢|.

Lemma 2. In the region
Cy

P T AR
logd 2’

log (s—1){(s) = O ().

Applying K. Wiertelak’s results ([3]) for the case K=Q and utilizing the standard
method for estimating log {(s) and log (s—1){(s) we can get the proofs of Lemma 1
and Lemma 2.

Let P.(x)= 3 h(n,z), then by Perron’s classical formula and (3) we get

nEx

lf| <2,

we have

e+iT +1

afP,(:)dr: lim 2 [

~e 21i  Jr S(s+1

) g(s, 2)*(s)ds,



On a class of arithmetical functions 197

where ¢>1, x=0. Putting {*(s)g(s,z)=H(s,z)(s—1)"* and

+1
(b(s, Z, x) = S(S+1) H(Sa Z)(S—l)
we obtain
x 1 c+iT
2.1 of P,(ndt = Jim mc_j‘; &(s, z, x)ds.
Let o =1—L=l--q:=-l then 0---::1«:l and let r<n and O<e<
. log 4 2 2

<arc tg—i—. Then by Cauchy’s theorem the integral on the right-hand side of (2.1)

may by replaced by the integrals 1, ..., I, over the paths I'y,...,Iy which are
defined as follows:

: > . ¢ oy
Iy, is the segment <c iT, 1 Tog (T152) G 1T>
I',, isthe curve described by 1— ——W-HI as tincreases from — 7 to —2.
Iy, is the segment (1—-n—2i, 1—n—intge),
r,, is the segment {1 —n—intge, 1—re)

I, is the arc of the circle 1+re’® described as @ increases from —n+e,

Ig, is the segment (1—re~*, 1—n+intge)
I';, is the segment (1—-n+intge, 1—n+2i)

Iy, is the curve described by 1— ———+u as ¢ increases from 2 to T.
y Y T log(M+2)

Iy, is the segment <l— +iT, c+!T>

(T+2)

We note that I'y, I'y, I'y and I'y depend only on T, and do not depend on r or &.
For fixed T and r, and for ¢-+0, I'; and I'; become the segments I';={l—n—2i,

1-n), I';=(1—n,1—n+2i).
For I, and /; we have

lim I, = E{Tl}rf@(& z, x)ds = frH(a, z)(1—0)~*(e~")~*

1-n

=]

xﬂ'l-l d'
s@+1)

. . 1-9 x0+l
o g —_Y—3\—2
lim g = lgtgr_[dﬁs, z, x)ds = 1—'1: H(o, 2)(1—0)"%(e") @+ da
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If y,={s: |s—1|=r} excluding the point 1—r, then

' —
Ein;n Li+I+1 = f'P(s, z, x)ds+2isinnz f (H(l t, 2) it dn
b - r

1—u)(2—u)
which does not depend on the choice of r. If T+ then I;,—~0, and 7;—~0 so that

2.2) f P,()dt = S.(¥)+o(x, 2)
where i

_sinaz f H(l-%,2) ,_, 1
(2.3) S.(0) = — f o x* du+ﬂ-l.-?:f¢(s, z, x)ds,
(2.4) o(x,2) = Jy+ 3+ I+ 0,
and

P F Cy : N
S e~ _;{ "[1 ~Tog(2) T b7 x] ["" (1+2) log=qr|+2)]d"
1 flrdf el
(2.6) Jy = —z?g-r:fdi(s, z,x)ds; Jp= Wr:fcb(s, 2, X)ds,
+ o0

- ol e
@n k=57 [ 0|l oge+2) T A Taeg )t

Using Lemma 1 we have on I'y and I

D(s, 2, x) < x2Cu/los(ltl+2) 7| =2 Jog |1]
and we obtain the following estimate:
(2.8) Jy+Jy < x?exp(—24 I/@.) }” t—*+¢]og t dt
where A=V£, cs=>0. :
Since the integral }” t~2*¢log tdt is bounded, from (2.8) we get
2

(2.9 Jo+Jy < x*exp (—24 Vlog x).
On I'; and I'; we have

D(s, z, x) =< x>~ = x2exp (—nlog x)
and therefore we obtain
(2.10) Jy+J; < xtexp (—24 log x).
By (2.4), (2.9) and (2.10) it follows that

(2.11) w(x, z) < x*exp (—24 Vlog x).
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It can be noted that for |z|=1 the function S,(x) is infinitely differentiable. From
(2.3) we get
n

wooy  SINXZ st 43 B 7w
2.12) §7(x) = — er(l—u)u X" dut—5— er(s,z)(s 1)~=x*~1ds.

By Lemma 2 and (1.5) it follows that the function H (s, z)=g(s, z) exp (z log (s— 1){(s))
is bounded in the region |s—1|=#, |z|=1. Hence, we have

n nlogx
(2.13) f H(l-u, u~*x"du< [ v-le~"dy,
r rlogx
where i
o v
~ logx”
For |s—1|=r<% we obtain
(2.14) [H(s, 2)(s—1)~*x*~1ds < x'.
Putting r= G for x sufficiently large from (2.13) and (2.14) we get
(2.15) 57(x) = 0(1).
Let o-:e-:%, 1€ (x, x+¢&), then
1 x+& 1 x4
2.16 — f;rdr-—}’,x|§— P.(1)—P.(x)| dt.
(2.16) rf,f (t)di—B,(x) c,f'“ )
From (2.16), (1.2) we get
(2.17) |P. () — P,(x)| = RE+O(x*(log x)*=—-*%)
where 0=r—x=¢ and 0<¢<x/2. From (2.16) and (2.17) we get
x+§
2.18) % [ R di—P(x)| = RE+0(x*(log )*~1-).

On the other hand we have

w(x+¢, 2)—w(x, 2)
: g

I x4 p |
(2.19) 7 [ Pdt = S:x)+¢ [ (1—w)S; (x+uf)du+
x 0
By (2.11) and 0<6<% it follows that

(2.20) o(x+¢, z) < x?exp(—24 Vlog x)
and similarly from (2.15) we get
2.21) 57 (x+uf) = 0(1).
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From (2.18), (2.20), (2.21) we obtain
x+&
(2.22) ’ f F.() dt—S;(x)l < {+x(log x)Re=—1-24 % x? exp (—24 ylog x).

Putting ¢=xexp(—4 Vlog x), from (2.22) we have
1 x4&

(2.23) ff P.(1)dt— S'(x}l-@:x([ogx)k" a-2
Since .
x+§ x+§
B.(x)—S:0)| = |7 f P.(1) dt—S;(x)| + m(x)—%xf (1) dt

by (2.23) and (2.18) it follows that

(2.24) |P.(x) = S2(x)| < x(log x)Re==9-2.

To finish the proof there remains to evaluate S.(x). For ]s--1[=r<i, lz] =1,
we have

(2.25) E (" 2 z" B;(2)(s—1)/ + R, (s, 2)(s — 1)1+

for every fixed non-negative integer ¢, where the B; (z)s are analytic functions.
Cauchy’s classical inequality for coefficients of a power series implies that R, (s, z)=
O(1). By (2.25) and (2.3) it follows that

(2.25)
S’(x) s ZxBJ( )[M_J) f u-’"x‘"du+% f(s_l)J'—zxt-I ds +W(x, Z)
r Te

where

. - + oo
(2.26) W(x, z) = — 5’3{:3}(2)2121&u f wix""du+
i=0 .
. A 0
oy smrr(zn g—1) f R,(1—u, 2)ut* 1% du +

i - +1l—z,5-1
45 vf R, (s, 2)(s—1)7+1=2x*=1 s,

Since, for 0=j=¢q we have

- z-j-1
sin 7!;2 }) f uJ"x‘“du+— fxs—l(s 1)} s = (k;gé)_}) X
by (2.25") it follows that
z=j=
2.27) S0 = ZxB (z )M+ W, 2.

)
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We remark that

+ o
(2.28) f w-x"vdu<(logx)~*3, for 0=j=gq, |z]=1,
n
n
(2.29) J Ry(1—u, 2)ut*1=*x~* du < (log x)R**~1-3,
(2.30) qu(S, 2)(s—1)1+1-2-1 45 « (log x)Re*—9-2
Ve

and therefore by (2.28)—(2.30) and (2.26) it follows that
(2.31) W(x, z) < x(log x)Re*—9-2,
From (2.31), (2.27) and (2.24) we obtain

@) R = ZxO og eIt +0(x(log )
J=0
where
ot H(s, 2) .
Bj(Z)-—"m Wﬂ'&‘, for j—O, Lines @

|s—1]=d=1/2

and theorem 1 is proved.

3. Proof of Theorem 2

From (i)—(iii) we have
Z’ﬂ h(";z) =R 2.,'_1;’ for 6>1 and |z]=1
n=1 n ae=l N
and
(3.0) 5 B0 X) ]I[1+2"'(” z)] Res=o>1, |z =L
n=1 k=1
We remark that the product
G.1) 1][1-—] [1+ h (@', Z)]
k-:
has the following form 4
(3.2) IT (14 u,(s, 2)) exp (—v,(s, 2))
where .
=h
uy(s, z) = Z‘ (p.;, 2) s
=1 P
(3.3)
s, =2 S
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Since |u,(s, z)|=R o= =U,, we get
(3.9) 2 Ul <o for o%al*:—%.

P
In a similar way we obtain

h(p, 2)—
(3.5) [u, (s, 2)—0v,(s, 2)| = —I—(’?—;f.)—il+7; =W,
where
1
V, = Ko

From (3.5) and (ii) we get
(3.6) 2V, <, for e=0, :-%.

P

By Delange’s Lemma (see [1]) it follows that the product (3.2) is absolutely and uni-

formly convergent in the region ¢=o,=1—p :-l, |zl=1 and is bounded in this

region. Let
g(s,2) = ]p]' (14 u,(s, 2)) exp (—2,(s, 2)),
then
iy 1Y) = h(p*, 2)
3.7 g(s, 2) = ]'][IHF] [l+"§1 T]
and by (3.0) and (3.7) it follows that
uéi(-:;l = g(s, 2){*(s)

so that (1.3) is fulfilled. We have |g(s,z)|=K for Res=='0'1=l—q>%, lz|=1,

thus (1.5) is satisfied. Since g(s, z) is uniformly convergent, g(s, z) is analytic in the
region

—---—--—c'l l — o0 < oo =1
0= log 2 and the theorem is proved.

2
Corollary 1 is a simple consequence of the Theorem 2.
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