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Two dimensional nonassociative Euclidean nearrings
and the ring of hyperbolic numbers

By K. D. MAGILL, Jr. (Buffalo)

Abstract. The additive group of the ring H of hyperbolic numbers is the two
dimensional Euclidean group and the product v ◦w of two elements v and w is defined
by v◦w = (v1w1 +v2w2, v1w2 +v2w1). The ring H has a nontrivial central idempotent
(in fact, it has exactly two) and it has exactly four central involutions. We show that
each of these properties characterizes H, up to isomorphism, within the class of all
those nonassociative topological nearrings with a left identity whose additive group is
the two dimensional Euclidean group.

1. Introduction and statement of Main Theorem

A nonassociative Euclidean nearring N is a triple (Rn, +, ∗) where
(Rn, +) is the n-dimensional Euclidean group, ∗ is a continuous binary
operation on Rn, and the following right distributive law holds:

(RD) (a + b) ∗ c = a ∗ c + b ∗ c for all a, b, c ∈ Rn

If we wish to emphasize the dimension, we will refer to N as an n-dimen-
sional nonassociative Euclidean nearring. The definition of nonassociative
Euclidean nearring doesn’t require the multiplication ∗ to be associative,
but it doesn’t rule it out either. In case the multiplication ∗ is associative,
we will refer to N as a Euclidean nearring. Throughout this paper, we will
be concerned entirely with two dimensional nonassociative Euclidean near-
rings and (R2, +) will denote the two dimensional Euclidean topological
group.

Now let us turn to the ring of hyperbolic numbers. We will denote this
ring by H. Its additive group is simply the two dimensional Euclidean
group. However the product v ◦ w of two elements is given by v ◦ w =
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(v1w1 + v2w2, v1w2 + v2w1). The hyperbolic numbers have some quite
interesting properties and applications. For a nice exposition of some of
these, one is invited to read the article [3] by G. Sobczyk along with the
references he lists.

An element of a nonassociative nearring N is central if it commutes,
with respect to multiplication, with all elements of N . An idempotent of
N will be referred to as nontrivial if it is neither the additive identity nor
a multiplicative identity of N . If N has a multiplicative identity e, then
an involution is any element a ∈ N such that a2 = e. It is an easy matter
to verify that the ring H of hyperbolic numbers has exactly exactly two
nontrivial central idempotents and exactly four central involutions. The
two nontrivial central idempotents are ( 1

2 ,− 1
2 ) and ( 1

2 , 1
2 ) and the four

involutions are (1, 0), (−1, 0), (0, 1), and (0,−1). What we find remarkable
is the fact that the property of having a nontrivial central idempotent as
well as the property of having four central involutions characterizes, up to
isomorphism, the ring of hyperbolic numbers within the class of all two
dimensional nonassociative Euclidean nearrings which have left identities.
Specifically, our purpose here is to verify the following

Main Theorem. Let (R2, +, ∗) be a nonassociative two dimensional
Euclidean nearring with a left identity. Then the following statements are
equivalent:

(MT1) (R2, +, ∗) contains a nontrivial central idempotent.

(MT2) (R2, +, ∗) contains an identity e and exactly two nontrivial
central idempotents. Moreover, if c is one nontrivial central
idempotent, then the other is e− c.

(MT3) (R2, +, ∗) contains an identity and at least three central in-
volutions.

(MT4) (R2, +, ∗) contains an identity and exactly four central invo-
lutions.

(MT5) (R2, +, ∗) is isomorphic to H, the ring of hyperbolic num-
bers.

2. Verification of the Main Theorem

We find it convenient to proceed via several lemmas. For any vector
v ∈ R2, we let v = (v1, v2) and we will sometimes represent it as a column
vector as well.

Lemma 2.1. Let (R2,+, ∗) be a two dimensional nonassociative Eu-
clidean nearring with left identity (1, 0). Then there exist two continuous
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functions f and g from R2 to the space R of real numbers such that

(2.1.1) v ∗ w = (v1w1 + v2f(w), v1w2 + v2g(w)) .

Proof. According to Theorem 2.10 of [1], there exist four continuous
functions f, g, h and k from R2 to R such that

(2.1.2)
v ∗ w =

[
h(w) f(w)
k(w) g(w)

] [
v1

v2

]

=
(
v1h(w) + v2f(w), v1k(w) + v2g(w)

)
.

One readily verifies that since (1, 0) is a left identity for (R2, +, ∗), the
functions h and k are given by h(w) = w1 and k(w) = w2 for all w ∈ R2

so that the multiplication ∗ is indeed given as stated in (2.1.1).

Lemma 2.2. Let (R2,+, ∗) be a two dimensional nonassociative near-
ring with left identity (1, 0) and a nontrivial central idempotent (x, y).
Then y 6= 0 and the multiplication ∗ is given by

v ∗ w = (v1w1 + av2w2, v1w2 + v2w1 + bv2w2)(2.2.1)

where

a =
x− x2

y2
and b =

1− 2x

y
.(2.2.2)

Furthermore, (R2, +, ∗) is isomorphic to the topological ring H of hyper-
bolic numbers.

Proof. Since (x, y) is idempotent and multiplication is given by
(2.1.1), we have

(2.2.3) (x, y) = (x, y) ∗ (x, y) =
(
x2 + yf(x, y), xy + yg(x, y)

)
.

If y = 0, we must have x2 = x which means that either x = 0 or x = 1. In
either case we have a contradiction since (x, y) is nontrivial. Consequently,
y 6= 0 and we conclude from (2.2.3) that

(2.2.4) f(x, y) =
x− x2

y
and g(x, y) = 1− x.

Let c = (x−x2)/y and d = 1−x. Then for all v ∈ R2, we have v ∗ (x, y) =
(v1x + cv2, v1y + dv2) and (x, y) ∗ v = (xv1 + yf(v), xv2 + yg(v)). Since
(x, y) commutes with v, it readily follows that

(2.2.5) f(v) =
cv2

y
and g(v) = v1 +

d− x

y
v2
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for all v ∈ R2. Now let

(2.2.6) a =
c

y
=

x− x2

y2
and b =

d− x

y
=

1− 2x

y

and (2.2.5) becomes f(v) = av2 and g(v) = v1 + bv2 for all v ∈ R2. It
follows from this and (2.1.2) that the multiplication ∗ is given as in (2.2.1).

It remains for us to show that (R2, +, ∗) is isomorphic to H. With a
little calculation, one can verify that the mapping ϕ which is defined by
ϕ(v) = (v1 + rv2, sv2) where

r =
1− 2x

2y
and s =

1
2y

is an isomorphism from (R2, +, ∗) onto H.

Lemma 2.3. Let (R2,+, ∗) be a two dimensional nonassociative near-
ring with identity (1, 0) and at least three central involutions. Then one of
these involutions is of the form (x, y) where y 6= 0 and the multiplication
∗ is given by

v ∗ w = (v1w1 + av2w2, v1w2 + v2w1 − bv2w2)(2.3.1)

where

a =
1− x2

y2
and b =

2x

y
.(2.3.2)

Furthermore (R2, +, ∗) is isomorphic to the topological ring H of hyper-
bolic numbers.

Proof. The proof of this lemma is similar to that of the previous
lemma. According to Lemma (2.1), there exist two continuous maps f
and g from R2 to R such that the multiplication ∗ is given (2.1.1). Let
(x, y) be a central involution of (R2, +, ∗). We then have

(2.3.3) (1, 0) = (x, y) ∗ (x, y) =
(
x2 + yf(x, y), xy + yg(x, y)

)
.

It follows from (2.3.3) that

(2.3.4) x2 + yf(x, y) = 1 and xy + yg(x, y) = 0.

If y = 0, it readily follows from (2.3.4) that x = ±1 which means (x, y)
is either (1, 0) or (−1, 0). Now (R2, +, ∗) has a third central involution by
hypothesis so we choose (x, y) to be this involution which means y 6= 0. It
follows from this and (2.3.4) that

(2.3.5) f(x, y) =
1− x2

y
= c and g(x, y) = −x.
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It then follows from (2.3.5) that v ∗ (x, y) = (v1x + cv2, v1y − v2x) and
(x, y) ∗ v =

(
xv1 + yf(v), xv2 + yg(v)

)
. Since (x, y) commutes with v, it

follows from (2.3.5) that f(v) = av2 and g(v) = v1 − bv2 where

(2.3.6) a =
1− x2

y2
and b =

2x

y
.

It now follows from (2.1.1) and our previous observations that the multi-
plication ∗ is, in this case, given by (2.3.1).

Finally define a map ϕ from (R2,+, ∗) to H by ϕ(v) = (v1 + rv2, sv2)
where r = −x/y and s = 1/y. A few calculations serve to verify the fact
that ϕ is an isomorphism from (R2,+, ∗) onto H.

Proof of Main Theorem. Let (R2, +, ¦) be any nonassociative two
dimensional Euclidean nearring with a left identity l and a nontrivial cen-
tral idempotent. Then l 6= 0 and there exists a linear automorphism
ϕ of R2 such that ϕ(1, 0) = l. Define a multiplication ∗ on R2 by
v∗w = ϕ−1

(
ϕ(v)¦ϕ(w)

)
. It follows readily that ϕ is an isomorphism from

(R2, +, ∗) onto (R2, +, ¦). Moreover, (1, 0) is a left identity for (R2, +, ∗)
and it contains a nontrivial central idempotent. Thus, (R2, +, ∗) is isomor-
phic to H by Lemma (2.2) which means (R2,+, ¦) is isomorphic to H. We
have now shown that (MT1) implies (MT5). Now suppose (MT5) holds
and let ϕ be an isomorphism from H onto (R2, +, ∗). As we mentioned
earlier, it is a simple matter to verify that H has exactly two nontrivial cen-
tral idempotents and that they are ( 1

2 ,− 1
2 ) and ( 1

2 , 1
2 ). Thus, e = ϕ(1, 0)

is the identity of (R2, +, ∗) and c = ϕ( 1
2 , 1

2 ) is a nontrivial central idempo-
tent of (R2, +, ∗). Moreover, we have e−c = ϕ

(
(1, 0)− ( 1

2 , 1
2 )

)
= ϕ(1

2 ,− 1
2 )

and we see that e − c is the remaining nontrivial central idempotent of
(R2, +, ∗). Consequently, (MT5) implies (MT2) and since it is immedi-
ate that (MT2) implies (MT1), we have shown that (MT1), (MT2), and
(MT5) are equivalent. Now suppose (MT3) holds. The same technique
used in verifying that (MT1) implies (MT5) because of Lemma (2.2) also
works in verifying that (MT3) implies (MT5) in view of Lemma (2.3). As
we mentioned before (1, 0) is the identity of H and one easily verifies that
it has exactly four central involutions which are (1, 0), (−1, 0), (0, 1), and
(0,−1). Thus, (MT5) implies (MT4) which, in turn, immediately implies
(MT3) and the proof of the main theorem is complete.

Example 2.4. The requirement in the Main Theorem that the idempo-
tents and the involutions be central is absolutely essential in the sense that
there are many two dimensional (even associative) Euclidean nearrings,
certainly different from the ring of hyperbolic numbers which contain many
idempotents and many involutions. For example, let (R2,+, ∗) be the near-
ring where the multiplication ∗ is defined by v ∗w = (v1w1, v1w2 +v2). We
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showed in [2] that this is the unique, up to isomorphism, two dimensional
Euclidean nearring which has an identity and is not zero symmetric. That
is, there are elements v ∈ (R2,+, ∗) for which v ∗ 0 6= 0. One can verify
that, in addition to the identity (1, 0), the idempotents are precisely those
elements v where v1 = 0 and, in addition to (1, 0), the involutions are
precisely those elements v such that v1 = −1.
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