Convergence rates in the Marcinkiewicz strong law of
large numbers for Banach space valued random
variables with multidimensional indices

By ISTVAN FAZEKAS (Debrecen)

1. Introduction

Let (B, |.|) be a real separable Banach space and let {X,, né N’} be indepen-
dent identically distributed (i.i.d.) B-valued random variables (r.v.’s), where NY
denotes the positive integer d-dimensional lattice points (d is a positive integer).

d
For m,mécN’ n=m and n<m are defined coordinatewise and |n|= []n; if
i=1

n_(nls srsy nd)
Let S,= Z Xy, n€N’ In[5] the following strong law of large numbers (SLLN)

has been proved if B is of type p (1=p<2), E|X;|"(log* |X;])*" "< and EX;=0,
then S,/|n|*?—+0 almost surely (a.s.) as n—eo, This is a common generalization of
results due to Acosta [1] and Gur [7] who have proved this law for d=1 and for
d=1, B=R (the real numbers) respectively.

The aim of this paper is to give convergence rates in the above SLLN. We shall
show that under the assumptions given in this SLLN 3 [n|*~2P(|S,|=|n|%)<<

n
for every &=0, where ar=1, a=1/2 and pa=1. It will also be proved that
P(|S./=|n%e)=0(n|*"™) as n—o if E|Xj|'<e, EX;=0, ar=1, r=1 and B
is of type p for some 2=p=1/u.

These results are well-known for d=1 and B=R (see e.g. [4]). For d=1
and B=R the Marcinkiewicz SLLN and the related convergence rates have been
treated by Gur [7]. Convergence rates in the SLLN for B-valued r.v.’s have been
obtained by LA1[10] and JAIN [9] if B is arbitrary or Bis of type 2 (and d=1). AZLAROV
and VOLODIN [2] and WoyczyNski [14] deal with the SLLN and the related con-
vergence rates in B-spaces of type p, and in the case when /, (1=p=<2) is not fini-
tely representable in B respectively. In the case d=1 BAKﬁ'n’s and NoORrVAISA [3]
have proved more general theorems than our results.

In Section 2 we list some known results that will be used in our proofs. Section
3 deals with convergence rates. We follow the method of Gurt [7] and use some ideas
of WovczyNski [14]. In Section 4 a Chung type SLLN is given.

5D



204 Istvdan Fazekas

2. Preliminaries

Let d(k)=Card {n: n€N% |n|=k} and M(x)= 3 d(k). We know that
k=x

d(x)=0(x")) as x—o for every positive ¢ and M(x)~const. x(log* x)?~* as
X =+ co,
We shall denote by X a B-valued r.v. with the same distribution as X;. The

following lemma of Gur [7] plays a fundamental role in the proofs of Theorems 3.1
and 3.2

Lemma 2.1. For r=0 and m=0,1,2, ... the following statements are equi-
valent:
EIXT (log* [X[)'=1+" <oo;

2 [n""(log n))"P(|X| = |n|%) <<, a>0, &=>0.
n
Lemma 2.2. Let O<r<p=2 and define Y,=Xpx{|X,/=¢n|""}, where y(A)
denotes the indicator of the event A. If E|X|"(log* |X|)* '*™<co, then
2 (log [n)"E|[n| =" ¥,[P< e for m=0,1,2,....

Proor. This lemma has been proved in [7] for p=2 and B=R.
2 (log [n)™E |[n|~"/" Y, =

e J
= 3 (logjy-?"d() 3 i#"P(—1 < |XT = i) =
J'-l iml

(

Jj=i

M3

= (log j)"j="" d(j))iP"P(i—1 < |XI = i) =

i

Il
-

= const. 3 ((log i)"i~?"" M(i))i?"P(i—1 < |X| = i) =
=1

= const. 3 (log iy™4-%iP(i—1 < |X| = i) <ee.
=1

In the third step we applied Theorem 1 of [6].

We shall use the Marcinkiewicz—Zygmund inequality which is valid also for
B-valued r.v.’s:

Lemma 2.3. (WoyczyNsk1 [14]). Let B be of type p (1=p=2) and q=p.
There exists ¢ such that for any X with E|X|"<e, EX=0 the inequality
E|S,|* = c|n|]'PE|X|®
holds.

Lemma 2.4. (JAIN [9]). Let {X,, n€N} be ii.d. symmetric rv.’s, let j be a
positive integer and t=0. Then

P(|S,| = 3't) = A;In| P(1X| = 1)+ B,[P(IS,| = O,
where A; and B; are nonnegative constants which depend only on j.
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We need the following version of Lévy’s inequality:

Lemma 2.5. Let {X,, n€N?} be independent symmetric B-valued rxv.’s. Then
2.1) P(r;légclsll =1)=2P(IS,| =1, t=0.

ProOF. This can be proved by induction on d using Theorem 2.3 of [8] (which

states 2.1 for d=1).
The following lemma is a version of Lemma 2 of [3].

Lemma 2.6. Let {Z,,n€N?} be B-valued rv.’s and let Z3=Z,—Z, be a
symmetrization of this sequence. Let ¢ and 6 be positive numbers and suppose that

(2.2) P(Z,) <¢/2n|®) =6
for n<n, ;. Then there exists ng=ny(e, d) such that

(2.3) P(I}'lia.:{ |Z]| = In|"¢/2) = 6P(r}1§.lx |Z;| = eln|*) for n < n,.
If (2.2) holds for |n|=k,, then

5
2.4) P[sup@a-i]gél’[supliﬁlgs] Jor j=k,.
ki=j K| 2 Ki=; (K|

PrOOF. Let n, be so large that
iian([Zj| <¢g/2n|*) > for n < n,.
=n
Since
{Z| = In|%¢/2} © {I1Z)| = [n|"e}N{|Z;| = |n|*¢/2},
an application of the “lemma for events” (see [11], p. 246) gives (2.3). The proot of
(2.4) is similar.

Remark 2.7. Under the assumptions of the preceding lemma
P(1Z{| = |n|%¢/2) = 6P(|Z)| = n|%) for j=mn < n,;.

3. Convergence rates

The following results are Banach space analogues of Gut’s theorems [7]. The
proofs are similar to the proofs given in [7] and will be not given in full detail.

Theorem 3.1. Let {X,, né N} be i.id. B-valued r.v.’s, let ar=1 and a=1/2.
Suppose that B is of type p for some 2=p=1]a. Let us consider the following sta-
tements:

(3.1) E|X|"(log* |X|)¥-1<eo and if r=1, then EX=0;
(3.2) 3 |n|*=2 P(|S,|=|n|*¢)<< for every £>0;

5
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(33 Z |n|”“P(rl1‘1=ait |Sk|=|n|*e) <<= for every e=0;
= =

34) 3 j*-*P(sup |S//[kl*=¢)< o for every e=0.
J=1 Jj=k|

Then (3.1), (3.2) and (3.3) are equivalent. If or=1, then all of these statements are
equivalent.

Proor. (a) (3.1)=(3.2). For r<1 this follows from Theorem 4.1 of [7].
If ar=1, then by pax=1, p=>r. Using Lemma 2.3 (with ¢g=p) we obtain
2 " =2P(IS,| = 2¢[n|*) = ce™? 3 E|In|"/"Y,[P+ 3 P(IX| = |n|'/e) <<o

by Lemmas 2.2 and 2.1.

In the case ar=1 we can suppose that B is of type p for 1=p=r. First we
assume that X has symmetric distribution. Lemma 2.4 and Lemma 2.3 (with g=r)
give

2 In["=2P(|S,| = 3 [n|%) =
n

¢ 2/
= 4, 3 =P (X| = ko +8, (S EIXT)” 3 i,

where f=2—ar+r [a—%] 2i=1 for an appropriate j. Thus Lemma 2.1 implies
that the above expression is finite.

If X is not symmetric, then we consider a symmetrization XS=X—X" of X.
According to Theorem 3.2 of [3] P[IS;l-cc% [n]“]gé for m<n, ; (because a=1/p).

Since 3.2 holds for the partial sums S§=S8,—S; of the symmetrized r.v.’s, by Re-
mark 2.7 (3.2) holds for S,.

(b) (3.2)=(3.4) if ar=1. First we suppose that X is symmetric. In this case
we can follow the method used in Proposition 2.1 of [14]. Put f=ar—2=> —1.

“"'P sup |S./Ik|* = £2*9) = const. S ”2“”2“P m Syl/K|* = 2%) =
J%J (Jsllzil Kl /K] ) ‘gjg; (y‘,_:mggs,,,,dl wl/ K| )

= (by (5.2) of [7)),

const. 3 32424 3 P(S,l/Im|* = &/24) =

i=0 j=i lm|=2unu
=const. 324724 3 P(|Sul/Im|* = &/2*9).
Jj=0 |ml=gh‘+sld

Grouping terms in blocks {keN?: (24, ..., 2)=k<(2"*, ..., 26* )} we
obtain that the last expression is not greater than

const. Z,"v |m|PP(|S,| =¢/2%¢ |m|*) < <.
meNd
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(c) (3.4)=(3.1). For d=1 this implication follows from Theorem 3.3 of Jain
[9]. For d=1 it can be proved by the method used in [7].

(d) (3.2)=(3.1). First we prove for symmetric r.v.’s. If ar=1, then (3.2)=
=(3.4)=(3.1). In the case ar=1 a similar computation as in [2] (p. 585) shows that

P(|S,| = g[n|'") = 2"‘Ck2' P(|1X,] = 2¢|n|")

except for finitely many values of n. Thus 3 P(|X|>¢|n|"/")=e-, and Lemma 2.1
o

shows that (3.1) holds.

If X is not symmetric, then let X° be a symmetrization of X. By the symmetri-
zation inequality the sequence Sj satisfies (3.2). Thus, by what has already been
proved, E|X5|"(log* |X5[)?~ <. According to Lemma 2.6 of [9] this expectation
is finite for X, too.

(¢) We have proved that (3.2) (or (3.3) and (3.4) if ar>1) implies (3.1) without
assuming that B is of type p. We also know that (3.2)=(3.4) in the symmetric case.
Now we remove the symmetry assumption. From (3.2) there follows (3.1) and by
Theorem 3.2 of [5] P(|S,|=n|*¢)=3J finitely often (B is of type p). An application
of Lemma 2.6 gives the result, because (3.4) holds for S3.

(f) (3.2)=(3.3). In the symmetric case this is a consequence of Lévy's inequality
(Lemma 2.5). To remove the symmetry assumption one can argue as in (e).

In the case ar=1 the following result is valid.

Theorem 3.2. Let {X,,ncN?} be B-valued i.id. ruv.’s. Suppose that B is of
type p for some 2=p=r=0. Then the following statements are equivalent:

(3.5) E\X|"(log* |X|)! <= and EX =0 for r=1;
(3.6) 2, In] "t log |n| P(|S,| = |n|*/"e) <<= for every & =>0;
n
3.7 > || "log I“IP(Tﬁaf |Sk| = [n|*"e) <= for every & =>0;
3.8) 3 j-1P(sup |S,J/IK[V" =€) <o for every &=D0.
j=1 P

Proof. (3.5)=(3.6) and in the symmetric case (3.6)=(3.8) can be proved as
in Theorem 3.1.

One can prove (3.8)=(3.5) without assuming symmetry and that B is of type p.
First we note that Theorem 3.3 in [9] implies that E|X|"<e and EX=0 if r=1.
Using this fact, for d=1 the proof is the same as in the real-valued case (Theorem 2
of [4]). For d=1 the proof proceeds by induction on d as in [7].

(3.6)=(3.8) in the non-symmetric case and (3.6)=(3.7) follows as in (e) and
(f) resp. of the preceding proof.

Theorem 3.3. Let {X,,ncN?} be iid. B-valued ru.s, E|X|'<eo (ar=1)
and EX=0 if r=1. If B isof type p for some 2§p>—:—:-, then for every positive &:
(3.9 [n[*=1P(|S,| = |n/%) -0 as n —>o=;

(3.10) ]n]"“P(TgL |Sk| = [n[%) =0 as n e,
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If ar=1, then
ISl

(3.11) Inj*-1p [sup—, x s) -0 as n—oo,
n=k |K|

Proor. (a) If ra=1, then (3.9) is the weak law of large numbers. For ra=1
an application of Lemmas 2.4 and 2.3 proves (3.9) in the symmetric case. If X is not
symmetric, then one can use symmetrization and Remark 2.7.

(b) We prove the equivalence of (3.9), (3.10) and (3.11) without the assumption
that E|X|"<<o and that B is of type p. (3.9)=(3.10) follows from Lévy’s inequality
by symmetrization.

To prove (3.9)=(3.11) we can assume symmetry. Let 2™~1<n=2™ where
2m=(2m, ... 2™)cN? and 1=(1, ..., 1)EN? Then by Lévy’s inequality

"~ P(sup |Sul/[kl* = o) = 221*~12" 3 P(ISyl/121 = 6/2*) =

= 24 3 |20=ire=1{| 2] *=1P (IS |/|12}|* = /2*)}.
I=m
(3.9) implies that |n|™=! P(|S,/=|n|*¢)>8 occurs finitely often, thus the
above expression converges to 0 as n— e,

4. A Chung type SLLN

In this section we deal with a Chung type SLLN for B-valued r.v.’s with multi-
dimensional indices. In the case d=1 WovyczyNsk1 [14] proved an SLLN more
general than our theorem. In [13] Smythe presented a Chung type SLLN for real
random variables with multidimensional indices.

In the proof we shall use the following version of Kolmogorov’s inequality
and the Three Series Theorem respectively.

Lemma 4.1. Let B be of type p (1<p=2). Let {Y,, n€N?} be independent
B-valued rv.’s with E|Y,[P<< and EY,=0 (n€N®). Then there exists a B, 4 such
that

Bps‘ P
P('}"g}f |Zk‘:"£)§?k§;E|Xk|

for every ¢=0, where Z,= J X.
1=k
PRrOOF. One can prove this lemma with the help of the Doob—Cairoli inequality
(see e.g. [7]).

Lemma 4.2. (In the case d=1 see [12]). Besides the assumption of Lemma 4.1
let us suppose that 3 E|Y,|P<<e. Let Zy, denote the sum > Y. Then there
Né

ne m=k=n
exists an event M of zero probability with the following properties:
(a) Forevery e>0 and w ¢ M one can obtain a ty=1,(e, @) such that |Zg(w)|<e
if at least one coordinate of n is greater than t,.
(b) For every wd¢ M there exists K=K(w) such that |Zy(w)|=K for m=>n.
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PROOF. An application of Lemma 4.1.

Theorem 4.3. Let B be of type p (1<p=2). Let {X,, n€ N%} be independent
B-valued rv.’s, EX,=0. If J E|X,|”/|n|P<c, then S /In|-0 a.s. as |n|—ce.
n

PrROOF. In Lemma 4.2 let Y,=X,/|n| (n€ N?). Then

1Su(@)| _ )
] Iml |2 .(m)l— Z |27 (o )I"'T 2. 1ZP ()] =
iim
= *—'—rgﬁf) +e<2 if |m| :.--w (for wé M).
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