Asymptotic behavior of the nonoscillatory solutions
of differential equations with integrable coefficients
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Introduction

The object of this paper is to obtain new sufficient conditions which ensure that
any nonoscillatory solution x(7) of the equation

(%) (a(@x’) +q(0) f(x) = h(D)

satisfies either liminf|x(7)|=0 or x(f)=~0 as t-—oo. Previous results under more
t—= oo

restrictive hypotheses than those needed here were obtained by HAMMETT [6] for
(*) and by KArTsATOS [8] for an n-th order version of (*). Similar results have also
been obtained for (*) and generalizations of (*) in [2—35, 9].

Using techniques motivated by the work of KAMENEV [7], we are able to prove

our results without requiring f q(s)ds=e= and/or g(f)=0 as most other authors
have done. Examples illustrating the differences in the results here and previous
results are given in the body of the paper.

In the last section we extend some of our results to functional differential equa-
tions.

Main results

Consider the equation
(D (a()x') +q(0f(x) = h(1)

where a, h, q: [ty, ==)=~R and f: R—~R are continuous with a(#)=0. All solutions
x(f) of (1) considered here are assumed to be defined on an interval [T, <) and to
satisfy sup |x(7)|>=0 on every interval [t, =), t=T7. Such a solution will be called
oscillatory if its set of zeros is unbounded above and it will be called nonoscillatory
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otherwise. We will also utilize the following conditions as needed:

2) xf(x) >0 for all x#0;

®) [ h(s)|ds <=;

@ [ Wa(s)ds = o=

and for every positive constant &, there exists a positive constant &, such that
®) f(x)=¢ey, for all |x|=eg.

Also, for notational purposes, we let w(f)=a(t)x’(1)/f(x(f)) for any nonoscillatory
solution x(7) of (1).

Lemma 1. In addition to (2)—(5), suppose that

(6) f g(s)ds converges.
If x(t) is a solution of (1) such that liEn Lnf |x ()| =0, then

(7) J [ (x)w2s)a(s)] ds <=,
) w()~0 as t—+oo,
and

®  wo= [ OO ds+ [ [d6-herxe)]ds

for all sufficiently large t.
PrOOF. Let x(7) be a solution of (1) satisfying ligrl inf|x(#)|>0. Then there

exist positive constants m, B, and t;=>1, such that |x(7)|=B and ] ¥ (x(t))jjzm
for t=¢,. This, together with (3), implies there exists a constant M;=0 satisfying

(10) SR f(x6)]ds = My, t=1,.

From the definition of w, we have w’(t)+w(?)f"(x(1))/a()=h(D)[f (x(1))—q(1),
and integrating we obtain

(1) w@+ [ e (x()/a)]ds = w(t)+ f [h()/f(x)]ds— [ q(s)ds.
Using (6), (10), and (11) we see that for z=t=1,

(12) lim [w(2)+ f W2 (x(s))/a(s)] ds] = 4

where A is finite.
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Now suppose that (7) does not hold. Then there exists #,=>#;, such that for all

Iw(z)/f [w2(s)f' (x(s))/a(s)] ds+1l <1/2

w(z)/f [w2(s)f'(x(s))/a(s)] ds < —1/2.

Also, |x(f))=B=0 ensures the existence of a constant b=0 such that f’(x(¢))=b.
Thus for all z=¢, we have

(W2 (2)f" (x(2))/a (z))/(f [w2(s).f" (x(s))/a(s)] ds)? = b/4a(z)

and upon integrating we have -
(b4) [ Wa@lds =~(f [£ (@)W a@]ds)™|

which contradicts the assumption that (7) does not hold.

To prove (8), first observe that (7) and (12) together imply that :llTE w(z) exists.
Now if w(z)+-0 as z—<e, then there exist positive constants B and z, so that
w?(z)=B for z=z,. But then

t

[ [f'(x@)w*)a@]ds = [ [Bbla(s))ds

o

contradicting (7). Finally (9) follows by letting z—<= in (11).
For our next result observe that if (3) and (6) are satisfied then

ho(1) = (1/a"2 (D) [ (q(s)— R (s)|/k)ds

is a well defined function on [t,, =) for every. positive constant k in the sense that
the improper integral converges. As long as the improper integrals involved converge,
we can define _

hy () = f h3(s) ds

and

hoir()) = [ [ho(s)+ Khy(s)/a"2 ()] ds

t

for n=1,2,3,..., where K is any positive constant. In some of the remaining
results, we will need the condition that for every constant K=0 there exists a positive
integer N such that

(13) h, exists for n=0,1,2,..., N—1, and hy does not exist.
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Theorem 2. Let (2)—(6) and (13) hold. If, in addition, for every fixed k=0
(14) ho(1) =0
for all large t, then every solution x(t) of (1) is either oscillatory or satisfies
ﬁlll_j.nf |x(#)|=0.

PrOOF. Assume that the conclusion of the theorem is false. Then there exists
a solution x(f) of (1) such that lil"l‘_l_il'lf |x(#)| =0, and there exists a positive constant
k such that |f(x(s))|=k for all sufficiently large ¢. Hence, in view of (9),

(15) w®) = [ (¢ —[h@)K)ds+ [ (f(x()w?(s)/a(s)) ds,

so w(f)/a'*({)=hy(1)=0 from which we have
(16) wi(0)/a(f) = h(2).
Furthermore, (5), (7), and (14) imply that

17) [ (w*(s)/a(s))ds <o
and that there exists a constant K=0 such that

(18) w(f) = a2(t)hy(1) + K f (w*(s)/a(s)) ds.

If N=1, then (16) and (17) together imply that h,(f)= f h§(s)ds < which
f
contradicts the nonexistence of h,(f)=hy(7). If N=2, then (16) and (18) imply that

w(?) = a'2()hy () + K f h3(s)ds = a'2(t)hy(1) + Kh, (1).

So
wi(0)/a (1) = (ho(f) + Khy (1)/aV2 (1))

But then (17) shows that

[ (ho(s)+Kny(9)/a*(9))* ds <o,

t

which contradicts the assumption that hy(f)=h,(f) does not exist. A similar argu-
ment leads to a contradiction for any integer N=2.
An example of an equation satisfying the hypotheses of Theorem 2 is

x" 4+[(2+sin t—2¢ cos 1)/2*%] x® = (2+sin t—2f cos t +41%%)[21%3, =1,
which has the nonoscillatory solution x(f)=1/t. Here

f g(s)ds = (2+sin /12 = 1/1/2,

t
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It is clear that given any positive constant m, |h(8)|=9/22<m/t*?* for
t=max {1,81/4m*}, so that
[ (Ih(s)|/m) ds = 2362,
T

Thus hy(1)=1/r"*—1/f**=0. Furthermore,

fhﬁ(s)ds ‘é‘:f(l/s“’—l/s’f’)“ds = oo,

so N=1.
Theorem 2 differs significantly from previous results of this type in that we

do not require ¢(7)=0 or even f q(s)ds=eo.

In our next results, for notational purposes, we let F(x)= f f(u)du and for

any function H we let H(u),=max{H(u),0} and H(u).= n:ax {-H(u),0} so
that H(u)=Hu), —H(u)-.

Theorem 3. In addition to (2), (4)—(6), (13) and (14), let

(19) a(t) >0,

20) [ [@©)a®),/as)a] ds <o,
and

@1 J [h@)l/(a(s)g(s))*] ds <=

hold. Then every solution x(t) of (1) is either oscillatory or satisfies x(1)—~0 as 1 oo,

Proor. Let x(7) be a nonoscillatory solution of (1). First notice that (20) implies
that a(f)g(¢) is bounded from above which, in view of (21), implies (3), so the hypo-
theses of Theorem 2 are satisfied. Thus, if x(7) is eventually monotonic, then by
Theorem 2 we have 'I.i-ql lx(1)| =lim inf |x(7)|=0.

Now suppose that x(r) is not eventually monotonic and that x(f) does not
tend to zero as -, Setting

V(0) = a(®)x’ (0P/2q(0)+F(x ()
and differentiating we obtain
V(@) = a@)x’ ()x"(0/g()+[x OPlg(a’ () —a(n) g (0)2¢* O +x" O f(x()) =
= X' (Oh®)/q()~[(a(Dg(®)/a()g®][a()¥ OF/2¢(D)] =
= x' (Nh()/q()—[(a()q®))i/a()gO]V (1) =
=—[lh@|/(a()g@®)"*+(a()g(®)+/a()q®)]V(®)— | @)|/(a(®)g@))2.
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Now (20) and (21), together with our assumptions on x(#), imply that there exist
positive constants 4 and T>¢, such that F(x(7))=34 and

[ [hs)l/(a()q())*+(a(s)q(s)): /a(s)q(s)] ds < max {1/2, 4/2}.
Setting d :
G(0) = exp[ [ (1h(s)|/(a(s)g())"*+(a(s)q(s));/a(s) g (s)) ds]
we see that 4

[GOV@) =—-GO)|h(®)]/(a()q@®)".

Integrating the last inequality we obtain

GOV =V(T)— [[GEIhE)|/(als)g(s)*] ds
T

and noting that V(T)=F(x(7)) and that G is increasing we have

V() = F(x(T))/G () - f' [1h($)1/(a(s)g(s))2] ds = 34/e"/2— 42 > A.
T

Thus we have
a(Olx' (OF/2q())+ F(x() > 4

for t=T which contradicts Theorem 2.
As an example, we can conclude from Theorem 3 that every solution x(f) of

the equation
(XY +x3/tIn®t = [2—7 sin (In 7) —6 cos (In 1)]/832 +
+[24sin(In )P/f7*In%t, t=e
is either oscillatory or satisfies x(f)-0 as 7o, whereas none of the results in

[2—6, 8, 9] give this conclusion. Notice that x(f)=[2+sin (In#)]/¥/* is a non-
oscillatory solution of this equation.

Lemma 4. Suppose that (2)—(6), (13), (14), and (19) hold. Then every nonoscilla-
tory solution x(t) of (1) satisfies a(f)x’(f)—+0 as t—co.

Proor. Let x(f) be a nonoscillatory solution of (1), say x(7) is eventually nega-
tive. For any positive number ¢, it follows from (3) that there exists #,=1¢, such that

f |h(s)|ds<e/2 for t=t,. Now there also exists T,>1, so that a(T,)x’'(T,)=0.

T
To see this we observe first that if no such T, exists, then x’(7) is eventually non-
positive. But then, since x(7) is eventually negative, lil;l'l inf x(f)<0 which contra-

dicts Theorem 2. Integrating (1) yields
a@x O—a(T)x'(T)+ [ q©)f(x()ds = [ h(s)ds
r Tn TO
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from which it follows that
(22) a@x' (@)=~ [ |h(s)lds >—g/2

Tﬂ
for t=T,.

Notice next that if 7 is any number in [T, =), then there exists T,>¢ such
that a(T))x’(T))<e/2. Otherwise there exists #,=7, such that a(7)x'(f)=¢/2
for t=t,. Then dividing the last inequality by a(f) and integrating gives x(7)=

3

=x(t5)+(¢/2) f [1/a(s)]ds which, in view of (4), contradicts x(f) being eventually
1,
negative. Haviilg chosen T,=>t satisfying a(Ty)x’(7T))<e/2, integrate (1) to obtain

T, T,
a(T)xX' (T)—a®x' O+ [ g f(x(s)ds = [ h(s)ds
which implies that : :
Ty
—a(O)x'(t) > —¢/2— [ |h(s)]ds.

4
Thus we have

TI
a()x' (t) = g2+ f |h(s)| ds < &

for t=T,. The last inequality, together with (22), implies that a(#)x’(f)—~0 as
{— oo,

The argument for the case when x(7) is eventually positive is similar and will
be omitted.

For our next theorem we will need the condition that if |x|>¢g;=0 then there
exists positive constants g; and b such that

(23) F(x)—pB|x| > bF(x) for all B =e,.
Theorem 5. In addition to (2)—(6), (13), (14), (19), and (23), let

(24) [ [(@(®)9): [(a(s) g(s))*] ds <=
@ If
(25) [h(@D/g]\O as e,

then every nonoscillatory solution x(t) of (1) is eventually positive and satisfies x(t)—~0
as t—os,

(i) If
(26) [h(/q(0] /0 as 1>,
then every nonoscillatory solution x(t) of (1) is eventually negative and satisfies
xX(H)—~0 as t—eo.

ProoF. Suppose that (25) holds and let x(f) be a nonoscillatory solution of (1).
Since ¢(7)=0 it follows from (25) that h(r)=0. Suppose that x(#)<0 on [T, <).
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Integrating (1) on [T, 1], t=T, we obtain

T, T,
a(T)X (T)-ax O+ [ 9@f(x())ds = [ h(s)ds.
Then by Lemma 4 have ¢ ‘

a(x'(1) = f q(s)f(x(s)) ds—f h(s)ds < 0.

The last inequality implies that x(f)<O and decreasing on [T, <) which
contradicts Theorem 2. Therefore, x(r)=0 on [T, ).

To complete the proof of (i), notice first that if x(f) is eventually monotonic,
then Theorem 2 implies that x(f)—~0 as 7—< and (i) follows in this case. Now
suppose that x () is not eventually monotonic. If x(f) does not tend to zero as 1o,
then there exist positive constants g, and A such that lim sup x(r)>2¢, and F (x(n)=

=>3A4 whenever x(t)=g;. Then (23) and (24) imply that there exist T,=T7 and
b=0 such that

x(Ty) = &, F(x(Ty)—h(To)x(Ty)/q(Ty) = bF(x(Ty)) = 24b,
(ax'())*<1 for t=T,, and f [(a(s)q(s))5/2(a(s)q(s))*] ds < Ab.
Ty
By Theorem 2 there is an increasing sequence {f,} of zeros of x’(f) such that

t,>T,, and t,—~< and x(f,)—+0 as n-—<o. Multiplying (1) by x’(#)/¢q(f) and
integrating yields

Tf [(@(®)x ())(a()q()+/2(a () (s))*] ds+F(x (1) =
= a(Ty)[x' (TIF/2q(Ty) + F(x(T) +
+ [ [@©x ©)Pa©q6)-2@6a@)f] ds+ [ ¥ $)/g@)ds.
A A

By (25) and a mean-value theorem for integrals, we have
f ' [h(s)x"(s)/q(s)) ds = h(t,)x(2,)/q(t) —h(T)x(To)/q(T) —
Ty
—x(W)[h(t)/q(t) —h(Ty)/q(T)] = —h(T)x(T)/q(Ty).

Therefore, for each n=1
Ab+F(x(1,)) = F(x(T9)—h(T)x(Ty)/q(Ty) = 24b

which is clearly impossible in view of the fact that F(x(z,))—~0 as n—ee. Thus
the proof of (i) is complete. The proof of (ii) is similar and will be omitted.
The equation

x"+x3tln®*t = 1/tIn® 142/ In® 1+ 1/ In? ¢,
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which has the nonoscillatory solution x(f)=1/Int, satisfies all the hypotheses of
Theorem 5. None of the results in [2—6, 8, 9] can be applied to this example to
give the conclusion of Theorem 5.

Notice that Theorem 3 does not apply to the last equation since (21) is not
satisfied. Also observe that neither (25) nor (26) is satisfied by the example following
the proof of Theorem 3, so Theorem 5 cannot be applied to that example. Thus we
see that Theorems 3 and 5 are independent.

Extensions

In this section we extend Lemma 1 and Theorem 2 to the functional equation

27) [a ()X () +Q(1, x(2), x(g(9)) = h(D)

where g: [y, «)~R and OQ: [t,, <)X R®*—~R are continuous, g(f)—+c as f—-eo
and a(¢) and h(1) are as before. We will also ask that

(28) x0(t,x,y)=0 if xy=>0.

Lemma 6. Let f: R—~R be a continuous function satisfying (2) and (5) and, for
x(£)#0, let w(t) be defined as before. If (3), (4), and (28) hold and x(t) is a solution
of (27) such that lim Lnf |x(2)| =0, then (7) and (8) hold and

w(l) = f [/ (x(s))w2(s)/a(s)] ds+ f [(Q(s, x(5), x(g(9))) — h(5))[f (x(s))] ds

for all sufficiently large t.
PRrROOF. Let x(7) be a solution of (24) satisfying ]i{l}jnnf [x(#)|=0. Then there

exists ;>max {fy, 0} such that both |x(r) and |x(g(#)| are positive on [ty =°).
Then x(f) is a nonoscillatory solution of the unforced equation

l[a()x’ @Y +[(2 (2 x(®), x(g(®)) - h D)) [f (x(®)] S (x (@) = 0.
It is well known, see for example [1], that x(¢#) nonoscillatory implies that
lim [ [(Q(s, x(5), x(2(s))) —h(s))/f (x(s))] ds # ==. Also lim inf |x(#)| >0 ensures
the ('elxistence of positive constants m and f,>1#; such that |f(x(1))|=m for t=t,.

This, together with (3), implies that there exists a constant M,;>0 so that

| f [h(s)/f (x(s))] ds| = f lh(s)| ds/m=M, for t=t,. Furthermore,

f [(@(s, x(s), x(2())) —h () [f(x(s)] ds =

= f [0(s, x(s), x(g ) [f (x(9)] ds—,‘ f (R ()l (x(s))] ds],

6D
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SO

j [Q(s, x(5), x(g()))[f(x(5))] ds = f [(Q(s, x(5). x(2(5))) —h (5)[f(x(5))] ds + M,.

It then follows that
J [0(s x(s), x(g)[/(x(s))] ds <=

since the integrand is nonnegative. Thus f [O(s, x(5), x(g(5)))/f(x(s))] ds converges

as z—oo for every t=t,.
Differentiating w we obtain

w () +f (x@)wr(D)a(t) = [A([)—Q(t, x(1), x(g (1)) ] [f (x(0)).

Therefore for each 1=t, we have

w@+ [ [ EOWOEE]ds = wd+ [ [H6)-0( x), @O (xE)] ds

and hence

lim [v@+ [ [ x@)wi(s)a(s)]] ds = M,
for some constant M,. Thus there exists a positive constant M such that
[w@+ [ [ (&)W (a©)]| < Ms.

The remainder of the proof is similar to the latter part of the proof of Lemma 1
and hence will be omitted.

In order to extend Theorem 2 to (27) we need Q(#, x, ) to satisfy the condition
that there is a continuous function f: R—R such that for any positive constant k
there exists a continuous function ¢,: [fy, =)=~ R such that

(29) QU x, VIf(x)=q() if xy=0 and |x, |y =k

Notice that if in addition to (29), (2)—(5) and (28) hold and x(¢) is a solution of (27)
satisfying lim inf |x(#)| =0, then there exist positive constants f,, m, m,, and B
such that 1x(:)1zm x(g@®)|=my, |f(x@®)=m, [f’(x(t))]_B and [Q(r x(r)
x(g(1))— h(r)]/f(x(t)) Gm,()— |h(1)|/m for t=t,. If we define h,(7), n=0,1,2, ..

as in Theorem 2, we have:

Theorem 7. Let (2)—(6), (13), (14), (28), and (29) hold. Then every nonoscilla-
tory solution x(t) of (27) satisfies liminf |x(£)|=0.
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The proof of Theorem 7, with simple modifications, is the same as the proof of
Theorem 2. As an example, we can conclude from Theorem 7 that every nonoscilla-
tory solution of the equation

x”+sin h(x (D2 +x2 (/D)1 +x2(2)])/tIn* t = 2/8, t=2
satisfies li{{l_ Lnf |x(#)|=0. Here h(f)=2/t%, Q(t, x,y)=sinh(x[2+y*/[1+y*])/tIn®¢,

f(x)=sinh x, and g(f)=1/tIn*t. Notice that h,,(t):f[q(s)-—|h(s)[/m]ds=1/ln t—

—1/me2.

References

[1] N. P. BHATIA, Some oscillation theorems for second order differential equations, J. Math. Anal.
Appl. 15 (1966), 442—446.

[2] J. R. GRAEF, S. M. RANKIN and P. W. Srikes, Oscillation theorems for perturbed nonlinear
differential equations, J. Math. Anal. Appl. 65 (1978), 375—390.

[3] J. R. Graer and P. W. Spikes, Asymptotic behavior of solutions of a second order nonlinear
differential equation, J. Differential Equations 17 (1975), 461—476.

[4] J. R. GrarrF and P. W. Spikes, Asymptotic properties of solutions of functional differential
equations of arbitrary order, J. Math. Anal. Appl. 60 (1977), 339—348.

[5] R. GriMMER, On nonoscillatory solutions of a nonlinear differential equation, Proc. Amer.
Math. Soc. 34 (1972), 118—120.

[6] M. E. HamMETT, Nonoscillation properties of a nonlinear differential equation, Proc. Amer.
Math. Soc. 30 (1971), 92—96.

[7] 1. V. KaMmenev, Oscillation of solutions of a second-order differential equation with an “integrally
small” coefficient, Differential’nye Uravnenija 13 (1977), 2141—2148.

[8] A. G. KArTsaTos, On the maintenance of oscillations of n-th order equations under the effect
of a small forcing term, J. Differential Equations 10 (1971), 355—363.

[9] A. G. KArTsATOs, On Positive solutions of perturbed nonlinear differential equations, J. Math.
Anal. Appl. 47 (1974), 58—68.

( Received March 19, 1984.)

DEPARTMENT OF MATHEMATICS AND STATISTICS
MISSISSIPPI STATE UNIVERSITY
MISSISSIPPI STATE, MS 39762

6"



