On some conditions for the strong law of large numbers
By A. KUCZMASZEWSKA and D. SZYNAL (Lublin)

1. Introduction. Let {X,,n=1} be a sequence of independent random variables
with EX,=0, ol=0%’X,<<, n=1. H. TEICHER [4] has proved that if
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for some positive numerical sequence {a,, n=1} with n“a,,a <o, then
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B nzl} satisfies the strong law of large numbers, i.e. S,./n——O a.s., n—<o, where
S,, = Z Xj-
=1

Note that the Kolmogorov series ;= 3 j~%¢} can be considered as the first
j=1
term of the sequence {2);; k=1} where

d .i
Zi= et So= Shve 2 o 5o, k=2
£

k-1=k—1
KAr-LA1 CHUNG [2] has proved that if a function ¢: R—~R™ is nonnegative,
even, continuous and nondecreasing on (0, ) with lim @(x)=< such that
(@) @)/xt or (b) @(x)/xt, o(x)/x} as xte, and if {X,, k=1} is a sequ-
ence of independent random variables with EX,=0, n=1, and J E@(X,)/p(n)<-<e,
n=1

then {X,,n=1} satisfies the strong law of large numbers.

In [5] there have been given Chung—Teicher type conditions for the strong law
of large numbers. Namely, it was shown that if {X,, n=1} is a sequence of inde-
pendent random variables with EX,=0, n=1, and ¢ is a function satisfying the
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Note that for a sequence {X,,n=1} of independent random variables such that
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diverges, so the mentioned results do not allow to verify whether that sequence
satisfies or not the strong law of large numbers.

The aim of our considerations is to give some new conditions allowing us to
verify the strong law of large numbers for larger classes of random variables than
the conditions given above.

2. Results
Theorem 1. Let {X,, n=1} be a sequence of independent random variables with

EX,=0, n=1. Let a function ¢: R—+R™ be nonnegative, even, continuous and non-
decreasing on (0, =) with }ml @(x)=-<= such that

(@) e(x)/xi or (b) p(x)/xt, @(x)/x*% as xte.

Suppose that in the case (a)
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and (C) is satisfied for some numerical sequence {a,,n=1} with
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ProoF. Put X;=X,Ijx, <n, and let us consider
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Note that in the case (a) |X,|/n=¢(|X,))/@(n) while in the case (b) |X,|*)/n*=¢
(|Xa)/@(n). Taking into account these facts and setting Y,=(X,—EX;)*/(x,|<a.
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This proves that
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which implies by Kronecker’s lemma
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Moreover, we note that in the case (a) the assumption (B) implies
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while in the case (b), by (A,),
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But {U,;, j=2} is a martingale difference sequence, so that 3 U,/j®=<ee as.,
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Now taking into account the properties of ¢ and the condition (C), we have
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for any r=1. Putting r=2 and r=1 in the case (a) and (b) respectively, we get
5’ P[X,#X,]<-<e, which completes the proof of Theorem 1.
n=1

Corollary 1. If (B) and (B,) are replaced by the condition n=* Z"' iE(e(|XiD/e ()=
i=1

=o(l), then {X,, n=1} satisfies the strong law of large numbers, i.e. S,/n—~0 a.s.
as n-—-ee,

For a sequence {X,, n=1} of independent random variables having moments
only of the first order one can establish the following.
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Corollary 2. Let {X,, n=1} be a sequence of independent random variables
with EX,=0, n=1. If

= o = X aE i
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and D P[|X,|=a,)<< for some positive numerical sequence {a,,n=1} with
n=1

o Xlt
Za"EﬁF‘ﬁm then (1) holds.

n=1

To prove the given assertion it is enough to use the case (a) of Theorem 1 with

P (x)=|x]2.
Corollary 2 allows us to state for instance that a sequence {X}, k=1} of inde-
pendent random variables such that

PIX, = £2MA+DA+H] = 1)(n1+%+Y) k=1,2,..., 0<8=1, a=>0,
PIX,=0]=1-1/n'*", n=1,2,...,

satisfies the strong law of large numbers.
To give a generalization of Theorem 1 we need the following lemma [1] p. 329.

Lemma 1. If {x;, 1=j=n}, are real numbers, S,= 2 Xj, and
jm1

Qﬁ.ﬂ = Z xhxh sse x‘k, ]. = k = n,
l=i=..<i =n
n
then for n=k=2, Q"’"=;Z.IFXJQ"'I'J'“ and Sy=k! Qy .+ci, where ¢, isa
generic designation for a finite linear combination (coefficients independent of n) of

terms ﬁ an x:,!s of order k, thatis, Zm' hi=k, 1=h;=k, 1=m<k.
i=1 j=1 i=1
Theorem 2. Let {X,, n=1} be a sequence of independent random variables
with EX,=0, n=1, and ¢ be a function from Theorem 1. Suppose that in the case (a)
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PrOOF. Put as previous by X;=XIx, <y. Then by Lemma 1, there exist
finite constants ¢;; ¢, ca, ..., Cx—3 such that
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function ¢ of the case (a), we get
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while in the case (b)
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Thus according to (5) n™?! 2 (X{—EX{) is a root of a k-th degree polynomial in

which the leading coeﬂicnent 1s unity and the remaining coefficients, by (6) and (7),
converge almost surely to zero. Therefore the conclusion

n
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follows from the well-known relations between the roots and coefficients of a poly-
nomial. But, as in the proof of Theorem 1, for r=2 and r=1 in the case (a) and

(b) respectively
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which proves (1).

Corollary 3. Let {X,, n=1} be a sequence of independent random variables
with EX,=0, n=1. If
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In [3] JEGOROV proved that if {b,, n=1} is a positive, increasing numerical
sequence with Jim b,=< and {X,, n=1} is a sequence of independent random

variables with EX,=0, n=1, such that

o Ji=1 Ja—1
-2k .2 2 2
Z bJ'a Ojx 2 O+ 2 F i and
Je=k Ji-1=k—1 =1

A fP[]X,,]>ab,]-:m, then {X,,n=1} satisfies the strong law of large numbers.

e>0n=1
The conditions given by Jegorov are more general than Teicher’s conditions.

In that way we can generalize Theorem 1 and Theorem 2 from this note. Then
we get the following:

Theorem 2’. Let {b,, n=1} be a positive, increasing numerical sequence with
limb,== and {X,, n=1} be a sequence of independent random variables with

n--oo

EX,=0,n=1 and )\ 21P[lX,,|Eeb,,]<oo. Suppose that in the case (a)
A *(1X;.D 3t o*(|X;,_,D
h %+1p @ (l Jx : £ Ji-1
P o = () W A S (P
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Then (1) holds.
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